Suppr超能文献

一种识别SNOMED CT中错误“是一种”关系的自动化方法。

An Automated Approach for Identifying Erroneous IS-A Relations in SNOMED CT.

作者信息

Hu Ran, Shi Jay, Cui Licong, Abeysinghe Rashmie

机构信息

McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX.

Intermountain Healthcare, Denver, CO.

出版信息

AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:545-554. eCollection 2024.

Abstract

SNOMED CT is the most comprehensive clinical terminology employed worldwide and enhancing its accuracy is of utmost importance. In this work, we introduce an automated approach to identifying erroneous IS-A relations in SNOMED CT. We first extract linked concept-pairs from which we generate Term Difference Pairs (TDPs) that contain differences between the concepts. Given a TDP, if the reversed TDP also exists and the number of linked-pairs generating this TDP is less than those generating the reversed TDP, then we suggest the former linked-pairs as potentially erroneous IS-A relations. We applied this approach to the Clinical finding and Procedure subhierarchies of the 2022 March US Edition of SNOMED CT, and obtained 52 potentially erroneous IS-A relations and a candidate list of 48 linked-pairs. A domain expert confirmed 41 out of 52 (78.8%) are valid and identified 26 erroneous IS-A relations out of 48 linked-pairs demonstrating the effectiveness of the approach.

摘要

SNOMED CT是全球使用的最全面的临床术语,提高其准确性至关重要。在这项工作中,我们引入了一种自动方法来识别SNOMED CT中错误的“是一个”关系。我们首先提取链接的概念对,从中生成包含概念之间差异的术语差异对(TDP)。给定一个TDP,如果反向TDP也存在,并且生成此TDP的链接对数量少于生成反向TDP的链接对数量,那么我们建议将前者的链接对作为潜在错误的“是一个”关系。我们将此方法应用于2022年3月美国版SNOMED CT的临床发现和程序子层次结构,获得了52个潜在错误的“是一个”关系和48个链接对的候选列表。一位领域专家确认,52个中的41个(78.8%)是有效的,并从48个链接对中识别出26个错误的“是一个”关系,证明了该方法的有效性。

相似文献

1
An Automated Approach for Identifying Erroneous IS-A Relations in SNOMED CT.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:545-554. eCollection 2024.
2
A deep learning approach to identify missing is-a relations in SNOMED CT.
J Am Med Inform Assoc. 2023 Feb 16;30(3):475-484. doi: 10.1093/jamia/ocac248.
3
A substring replacement approach for identifying missing IS-A relations in SNOMED CT.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:2611-2618. doi: 10.1109/bibm55620.2022.9995595. Epub 2023 Jan 2.
5
Auditing SNOMED CT hierarchical relations based on lexical features of concepts in non-lattice subgraphs.
J Biomed Inform. 2018 Feb;78:177-184. doi: 10.1016/j.jbi.2017.12.010. Epub 2017 Dec 20.
7
Leveraging non-lattice subgraphs for suggestion of new concepts for SNOMED CT.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2021 Dec;2021:1805-1812. doi: 10.1109/bibm52615.2021.9669407.
8
Integrating cancer diagnosis terminologies based on logical definitions of SNOMED CT concepts.
J Biomed Inform. 2017 Oct;74:46-58. doi: 10.1016/j.jbi.2017.08.013. Epub 2017 Aug 24.
9
Construction of an interface terminology on SNOMED CT. Generic approach and its application in intensive care.
Methods Inf Med. 2010;49(4):349-59. doi: 10.3414/ME09-01-0057. Epub 2010 Jun 22.

引用本文的文献

1
Quantitatively assessing the impact of the quality of SNOMED CT subtype hierarchy on cohort queries.
J Am Med Inform Assoc. 2025 Jan 1;32(1):89-96. doi: 10.1093/jamia/ocae272.

本文引用的文献

1
Automated Identification of Missing IS-A Relations in the Human Phenotype Ontology.
AMIA Annu Symp Proc. 2023 Apr 29;2022:785-794. eCollection 2022.
2
Identifying Missing IS-A Relations in Orphanet Rare Disease Ontology.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:3274-3279. doi: 10.1109/bibm55620.2022.9995614. Epub 2023 Jan 2.
3
A substring replacement approach for identifying missing IS-A relations in SNOMED CT.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:2611-2618. doi: 10.1109/bibm55620.2022.9995595. Epub 2023 Jan 2.
4
A deep learning approach to identify missing is-a relations in SNOMED CT.
J Am Med Inform Assoc. 2023 Feb 16;30(3):475-484. doi: 10.1093/jamia/ocac248.
5
Targeting stopwords for quality assurance of SNOMED-CT.
Int J Med Inform. 2022 Nov;167:104870. doi: 10.1016/j.ijmedinf.2022.104870. Epub 2022 Sep 17.
6
Identification of missing hierarchical relations in the vaccine ontology using acquired term pairs.
J Biomed Semantics. 2022 Aug 13;13(1):22. doi: 10.1186/s13326-022-00276-2.
7
The use of SNOMED CT, 2013-2020: a literature review.
J Am Med Inform Assoc. 2021 Aug 13;28(9):2017-2026. doi: 10.1093/jamia/ocab084.
9
Automating the Transformation of Free-Text Clinical Problems into SNOMED CT Expressions.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:497-506. eCollection 2020.
10
Implementation of SNOMED CT in an online clinical database.
Future Healthc J. 2017 Jun;4(2):126-130. doi: 10.7861/futurehosp.4-2-126.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验