Fedorenko Inna V, Fang Bin, Munko Ana Cecelia, Gibney Geoffrey T, Koomen John M, Smalley Keiran S M
The Department of Molecular Oncology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
Proteomics. 2015 Jan;15(2-3):327-39. doi: 10.1002/pmic.201400200. Epub 2014 Dec 17.
Basal and kinase inhibitor driven adaptive signaling has been examined in a panel of melanoma cell lines using phosphoproteomics in conjunction with pathway analysis. A considerable divergence in the spectrum of tyrosine-phosphorylated peptides was noted at the cell line level. The unification of genotype-specific cell line data revealed the enrichment for the tyrosine-phosphorylated cytoskeletal proteins to be associated with the presence of a BRAF mutation and oncogenic NRAS to be associated with increased receptor tyrosine kinase phosphorylation. A number of proteins including cell cycle regulators (cyclin dependent kinase 1, cyclin dependent kinase 2, and cyclin dependent kinase 3), MAPK pathway components (Extracellular signal regulated kinase 1 and Extracellular signal regulated kinase 2), interferon regulators (tyrosine kinase-2), GTPase regulators (Ras-Rasb interactor 1), and controllers of protein tyrosine phosphorylation (dual specificity tyrosine (Y) phosphorylation regulated kinase 1A and protein tyrosine phosphatase receptor type A) were common to all genotypes. Treatment of a BRAF-mutant/phosphatase and tensin homologue (PTEN) null melanoma cell line with vemurafenib led to decreased phosphorylation of ERK, phospholipase C1, and β-catenin with increases in receptor tyrosine kinase phosphorylation, signal transduction and activator of signaling 3, and glycogen synthase kinase 3α noted. In NRAS-mutant melanoma, MEK inhibition led to increased phosphorylation of epidermal growth factor receptor signaling pathway components, Src family kinases, and protein kinase Cδ with decreased phosphorylation seen in STAT3 and ERK1/2. Together these data present the first systems level view of adaptive and basal phosphotyrosine signaling in BRAF- and NRAS-mutant melanoma.
利用磷酸化蛋白质组学结合通路分析,在一组黑色素瘤细胞系中研究了基础和激酶抑制剂驱动的适应性信号传导。在细胞系水平上,观察到酪氨酸磷酸化肽谱存在相当大的差异。基因型特异性细胞系数据的整合显示,酪氨酸磷酸化细胞骨架蛋白的富集与BRAF突变的存在相关,而致癌NRAS与受体酪氨酸激酶磷酸化增加相关。包括细胞周期调节因子(细胞周期蛋白依赖性激酶1、细胞周期蛋白依赖性激酶2和细胞周期蛋白依赖性激酶3)、MAPK通路成分(细胞外信号调节激酶1和细胞外信号调节激酶2)、干扰素调节因子(酪氨酸激酶-2)、GTPase调节因子(Ras-Rasb相互作用因子1)以及蛋白质酪氨酸磷酸化控制器(双特异性酪氨酸(Y)磷酸化调节激酶1A和蛋白酪氨酸磷酸酶受体A型)在内的一些蛋白质在所有基因型中都很常见。用维莫非尼处理BRAF突变/磷酸酶和张力蛋白同源物(PTEN)缺失的黑色素瘤细胞系,导致ERK、磷脂酶C1和β-连环蛋白的磷酸化降低,同时观察到受体酪氨酸激酶磷酸化、信号转导和信号激活因子3以及糖原合酶激酶3α增加。在NRAS突变的黑色素瘤中,MEK抑制导致表皮生长因子受体信号通路成分、Src家族激酶和蛋白激酶Cδ的磷酸化增加,而STAT3和ERK1/2的磷酸化降低。这些数据共同呈现了BRAF和NRAS突变黑色素瘤中适应性和基础磷酸酪氨酸信号传导的首个系统层面视图。