Suppr超能文献

从语言变化的S曲线中提取信息。

Extracting information from S-curves of language change.

作者信息

Ghanbarnejad Fakhteh, Gerlach Martin, Miotto José M, Altmann Eduardo G

机构信息

Max Planck Institute for the Physics of Complex Systems, Dresden, Germany

Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.

出版信息

J R Soc Interface. 2014 Dec 6;11(101):20141044. doi: 10.1098/rsif.2014.1044.

Abstract

It is well accepted that adoption of innovations are described by S-curves (slow start, accelerating period and slow end). In this paper, we analyse how much information on the dynamics of innovation spreading can be obtained from a quantitative description of S-curves. We focus on the adoption of linguistic innovations for which detailed databases of written texts from the last 200 years allow for an unprecedented statistical precision. Combining data analysis with simulations of simple models (e.g. the Bass dynamics on complex networks), we identify signatures of endogenous and exogenous factors in the S-curves of adoption. We propose a measure to quantify the strength of these factors and three different methods to estimate it from S-curves. We obtain cases in which the exogenous factors are dominant (in the adoption of German orthographic reforms and of one irregular verb) and cases in which endogenous factors are dominant (in the adoption of conventions for romanization of Russian names and in the regularization of most studied verbs). These results show that the shape of S-curve is not universal and contains information on the adoption mechanism.

摘要

人们普遍认为,创新的采用情况可用S曲线来描述(缓慢启动、加速期和缓慢结束)。在本文中,我们分析了从S曲线的定量描述中可以获得多少关于创新传播动态的信息。我们关注语言创新的采用情况,过去200年的详细书面文本数据库使得对其进行统计的精度达到了前所未有的程度。通过将数据分析与简单模型(如复杂网络上的巴斯动态模型)的模拟相结合,我们在采用的S曲线中识别出内生和外生因素的特征。我们提出了一种量化这些因素强度的方法以及三种从S曲线估计该强度的不同方法。我们得到了外生因素占主导的情况(如德国正字法改革和一个不规则动词的采用)以及内生因素占主导的情况(如俄罗斯名字罗马化惯例的采用以及大多数被研究动词的正则化)。这些结果表明,S曲线的形状并非普遍适用,且包含了关于采用机制的信息。

相似文献

1
Extracting information from S-curves of language change.从语言变化的S曲线中提取信息。
J R Soc Interface. 2014 Dec 6;11(101):20141044. doi: 10.1098/rsif.2014.1044.
2
Quantifying the evolutionary dynamics of language.量化语言的进化动态。
Nature. 2007 Oct 11;449(7163):713-6. doi: 10.1038/nature06137.
3
Detecting evolutionary forces in language change.检测语言变化中的进化力量。
Nature. 2017 Nov 9;551(7679):223-226. doi: 10.1038/nature24455. Epub 2017 Nov 1.
4
Quantifying the driving factors for language shift in a bilingual region.量化双语地区语言转变的驱动因素。
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4365-4369. doi: 10.1073/pnas.1617252114. Epub 2017 Mar 15.
9
Ancient civilization: Cracking the Indus script.古代文明:破解印度河文字
Nature. 2015 Oct 22;526(7574):499-501. doi: 10.1038/526499a.
10
Historical linguistics in Australia: trees, networks and their implications.澳大利亚历史语言学:树、网络及其影响。
Philos Trans R Soc Lond B Biol Sci. 2010 Dec 12;365(1559):3845-54. doi: 10.1098/rstb.2010.0013.

引用本文的文献

3
The natural selection of words: Finding the features of fitness.自然选择的词汇:寻找适应性特征。
PLoS One. 2019 Jan 28;14(1):e0211512. doi: 10.1371/journal.pone.0211512. eCollection 2019.
4
The dynamics of norm change in the cultural evolution of language.语言文化进化中规范变化的动力学。
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8260-8265. doi: 10.1073/pnas.1721059115. Epub 2018 Aug 2.
6
Critical Behaviors in Contagion Dynamics.传染病动力学中的关键行为
Phys Rev Lett. 2017 Feb 24;118(8):088301. doi: 10.1103/PhysRevLett.118.088301. Epub 2017 Feb 23.
7
Text Authorship Identified Using the Dynamics of Word Co-Occurrence Networks.利用词共现网络动态识别文本作者身份。
PLoS One. 2017 Jan 26;12(1):e0170527. doi: 10.1371/journal.pone.0170527. eCollection 2017.

本文引用的文献

2
Excitable human dynamics driven by extrinsic events in massive communities.大规模群体中由外部事件驱动的人类兴奋动力学。
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17259-62. doi: 10.1073/pnas.1304179110. Epub 2013 Oct 7.
3
Word diffusion and climate science.词汇扩散与气候科学。
PLoS One. 2012;7(11):e47966. doi: 10.1371/journal.pone.0047966. Epub 2012 Nov 7.
4
High-accuracy approximation of binary-state dynamics on networks.网络中二进制动力学的高精度逼近。
Phys Rev Lett. 2011 Aug 5;107(6):068701. doi: 10.1103/PhysRevLett.107.068701. Epub 2011 Aug 4.
5
6
Diversity, competition, extinction: the ecophysics of language change.多样性、竞争、灭绝:语言变化的生态物理学。
J R Soc Interface. 2010 Dec 6;7(53):1647-64. doi: 10.1098/rsif.2010.0110. Epub 2010 Jun 30.
7
Building social cognitive models of language change.构建语言变化的社会认知模型。
Trends Cogn Sci. 2009 Nov;13(11):464-9. doi: 10.1016/j.tics.2009.08.008. Epub 2009 Oct 6.
8
Seventy-five years of estimating the force of infection from current status data.从现况数据估计感染率的 75 年历史。
Epidemiol Infect. 2010 Jun;138(6):802-12. doi: 10.1017/S0950268809990781. Epub 2009 Sep 21.
9
10
Quantifying the evolutionary dynamics of language.量化语言的进化动态。
Nature. 2007 Oct 11;449(7163):713-6. doi: 10.1038/nature06137.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验