Biological Sciences Division, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, United States.
Anal Chem. 2014 Nov 4;86(21):10608-15. doi: 10.1021/ac502389a. Epub 2014 Oct 23.
Biomacromolecules tend to assume numerous structures in solution or the gas phase. It has been possible to resolve disparate conformational families but not unique geometries within each, and drastic peak broadening has been the bane of protein analyses by chromatography, electrophoresis, and ion mobility spectrometry (IMS). The new differential or field asymmetric waveform IMS (FAIMS) approach using hydrogen-rich gases was recently found to separate conformers of a small protein ubiquitin with the same peak width and resolving power up to ∼400 as for peptides. The present work explores the reach of this approach for larger proteins, exemplified by cytochrome c and myoglobin. Resolution similar to that for ubiquitin was largely achieved with longer separations, while the onset of peak broadening and coalescence with shorter separations suggests the limitation of the present technique to proteins under ∼20 kDa. This capability may enable one to distinguish whole proteins with differing residue sequences or localizations of post-translational modifications. Small features at negative compensation voltages that markedly grow from cytochrome c to myoglobin indicate the dipole alignment of rare conformers in accord with theory, further supporting the concept of pendular macroions in FAIMS.
生物大分子在溶液或气相中往往呈现出多种结构。虽然已经可以解析不同的构象家族,但无法确定每个家族中的独特几何形状,而且色谱、电泳和离子淌度谱(IMS)分析蛋白质时的严重峰展宽一直是个难题。最近发现,使用富含氢的气体的新型差分或场非对称波形 IMS(FAIMS)方法可分离具有相同峰宽和分辨率的小蛋白泛素的构象体,其分辨率高达约 400,与肽相同。本工作探索了这种方法在更大蛋白质(如细胞色素 c 和肌红蛋白)中的应用。与泛素相似的分辨率主要通过更长的分离时间来实现,而随着分离时间的缩短,峰展宽和合并的出现表明目前的技术对分子量小于 20 kDa 的蛋白质的限制。这种能力可能使人们能够区分具有不同残基序列或翻译后修饰位置的完整蛋白质。在负补偿电压下出现的从小到细胞色素 c 到大到肌红蛋白的特征性明显增大的小特征表明,偶极子按理论排列稀有构象体,进一步支持 FAIMS 中 pendular macroions 的概念。