School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University , Blacksburg, Virginia 24061, United States.
Anal Chem. 2014 Nov 18;86(22):11403-9. doi: 10.1021/ac503363m. Epub 2014 Nov 6.
Quantum dots (QDs) have found a wide range of biological applications as fluorophores due to their extraordinary brightness and high photostability that are far superior to those of conventional organic dyes. These traits are particularly appealing for studying cell biology under a cellular autofluorescence background and with a long observation period. However, it remains the most important open challenge to target QDs at native intracellular molecules and organelles in live cells. Endocytosis-based delivery methods lead to QDs encapsulated in vesicles that have their surface biorecognition element hidden from the intracellular environment. The probing of native molecules using QDs has been seriously hindered by the lack of consistent approaches for delivery of QDs with exposed surface groups. In this study, we demonstrate that electroporation (i.e., the application of short electric pulses for cell permeabilization) generates reproducible results for delivering QDs into cells. We show evidence that electroporation-based delivery does not involve endocytosis or vesicle encapsulation of QDs. The amount of QD loading and the resulting cell viability can be adjusted by varying the parameters associated with the electroporation operation. To demonstrate the application of our approach for intracellular targeting, we study single-molecule motility of kinesin in live cells by labeling native kinesins using electroporation-delivered QDs. We envision that electroporation may serve as a simple and universal tool for delivering QDs into cells to label and probe native molecules and organelles.
量子点 (QDs) 因其非凡的亮度和高光稳定性而被广泛应用于生物学领域,其荧光强度和稳定性远优于传统有机染料。这些特性特别适用于在细胞自发荧光背景下和长时间观察期内研究细胞生物学。然而,将 QD 靶向到活细胞内的天然细胞内分子和细胞器仍然是最重要的开放性挑战。基于内吞作用的递送方法会导致 QD 被包裹在囊泡中,其表面的生物识别元件被隐藏在细胞内环境中。由于缺乏一致的方法来递送具有暴露表面基团的 QD,因此使用 QD 探测天然分子受到了严重阻碍。在本研究中,我们证明电穿孔(即应用短电脉冲使细胞穿孔)可用于将 QD 递送到细胞中,且重复性良好。我们有证据表明,基于电穿孔的递送不涉及 QD 的内吞作用或囊泡包裹。通过改变与电穿孔操作相关的参数,可以调节 QD 的加载量和由此产生的细胞活力。为了证明我们的方法在细胞内靶向中的应用,我们通过使用电穿孔递送来标记天然驱动蛋白,研究了活细胞中驱动蛋白的单分子运动。我们设想电穿孔可以作为一种简单而通用的工具,用于将 QD 递送到细胞中,以标记和探测天然分子和细胞器。