Suppr超能文献

乳酸乳球菌在接近零生长速率时的分子和代谢适应性

Molecular and metabolic adaptations of Lactococcus lactis at near-zero growth rates.

作者信息

Ercan Onur, Wels Michiel, Smid Eddy J, Kleerebezem Michiel

机构信息

Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands Top Institute Food and Nutrition, Wageningen, The Netherlands Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands NIZO Food Research, Ede, The Netherlands.

Top Institute Food and Nutrition, Wageningen, The Netherlands NIZO Food Research, Ede, The Netherlands.

出版信息

Appl Environ Microbiol. 2015 Jan;81(1):320-31. doi: 10.1128/AEM.02484-14. Epub 2014 Oct 24.

Abstract

This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation.

摘要

本文描述了乳酸乳球菌在从生长状态转变为接近零生长状态的过程中的分子和代谢适应性,采用碳限制恒化器培养法。转录组分析表明,在恒化器培养过程中,代谢模式在乳酸发酵和混合酸发酵之间转变,这似乎在相应的丙酮酸消耗编码基因的转录水平上受到控制。在恒化器培养过程中,细胞继续消耗几种氨基酸,但也产生特定的氨基酸,这些氨基酸可能来自糖酵解中间产物的转化。我们在几个与氨基酸转化相关的基因的上游区域鉴定出一个含有CTGTCAG的新基序,我们认为它是乳酸乳球菌KF147中CodY的靶位点。最后,在极低的碳可用性下,碳分解代谢物阻遏逐渐解除,发现替代分解代谢功能高度表达,这通过从接近零生长的培养物中获得的细胞对各种糖的初始酸化速率增强得到证实。目前的综合转录组和代谢物(氨基酸和先前报道的发酵终产物)研究提供了对乳酸乳球菌适应低生长速率条件的分子理解,并将我们早期对该细菌在接近零生长速率下的定量生理学分析扩展到涉及零生长适应的基因调控模式。

相似文献

1
Molecular and metabolic adaptations of Lactococcus lactis at near-zero growth rates.
Appl Environ Microbiol. 2015 Jan;81(1):320-31. doi: 10.1128/AEM.02484-14. Epub 2014 Oct 24.
2
Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis.
Appl Environ Microbiol. 2015 Apr;81(7):2554-61. doi: 10.1128/AEM.03748-14. Epub 2015 Jan 30.
4
Quantitative physiology of Lactococcus lactis at extreme low-growth rates.
Environ Microbiol. 2013 Aug;15(8):2319-32. doi: 10.1111/1462-2920.12104. Epub 2013 Mar 5.
6
Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.
Int J Food Microbiol. 2016 Jun 2;226:5-12. doi: 10.1016/j.ijfoodmicro.2016.03.002. Epub 2016 Mar 5.
7
Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates.
Appl Environ Microbiol. 2015 Sep 1;81(17):5662-70. doi: 10.1128/AEM.00944-15. Epub 2015 Jun 5.
8
Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates.
Food Microbiol. 2018 Aug;73:216-226. doi: 10.1016/j.fm.2018.01.027. Epub 2018 Feb 3.
10
Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363.
J Bacteriol. 2007 Feb;189(4):1366-81. doi: 10.1128/JB.01013-06. Epub 2006 Oct 6.

引用本文的文献

1
The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in NCC 2705.
Microorganisms. 2023 Feb 26;11(3):588. doi: 10.3390/microorganisms11030588.
2
The growth-survival trade-off is hard-wired in the Lactococcus lactis gene regulation network.
Environ Microbiol Rep. 2022 Aug;14(4):632-636. doi: 10.1111/1758-2229.13073. Epub 2022 Apr 21.
3
Systems-Level Analysis of the Global Regulatory Mechanism of CodY in Lactococcus lactis Metabolism and Nisin Immunity Modulation.
Appl Environ Microbiol. 2022 Mar 8;88(5):e0184721. doi: 10.1128/AEM.01847-21. Epub 2022 Jan 19.
4
A Reproducible and Scalable Process for Manufacturing a Pfs48/45 Based Transmission-Blocking Vaccine.
Front Immunol. 2021 Jan 11;11:606266. doi: 10.3389/fimmu.2020.606266. eCollection 2020.
5
A Novel Method for Long-Term Analysis of Lactic Acid and Ammonium Production in Non-growing Reveals Pre-culture and Strain Dependence.
Front Bioeng Biotechnol. 2020 Oct 8;8:580090. doi: 10.3389/fbioe.2020.580090. eCollection 2020.
6
Continuous Cultivation as a Tool Toward the Rational Bioprocess Development With Cell Factory.
Front Bioeng Biotechnol. 2020 Jun 25;8:632. doi: 10.3389/fbioe.2020.00632. eCollection 2020.
7
The Influence of Viable Cells and Cell-Free Extracts of on Volatile Compounds and Polyphenolic Profile of Elderberry Juice.
Front Microbiol. 2018 Nov 20;9:2784. doi: 10.3389/fmicb.2018.02784. eCollection 2018.
9
Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products.
PLoS One. 2017 Mar 31;12(3):e0174521. doi: 10.1371/journal.pone.0174521. eCollection 2017.
10
Stress Physiology of Lactic Acid Bacteria.
Microbiol Mol Biol Rev. 2016 Jul 27;80(3):837-90. doi: 10.1128/MMBR.00076-15. Print 2016 Sep.

本文引用的文献

1
Production of aroma compounds in lactic fermentations.
Annu Rev Food Sci Technol. 2014;5:313-26. doi: 10.1146/annurev-food-030713-092339.
2
Multifactorial diversity sustains microbial community stability.
ISME J. 2013 Nov;7(11):2126-36. doi: 10.1038/ismej.2013.108. Epub 2013 Jul 4.
3
Quantitative physiology of Lactococcus lactis at extreme low-growth rates.
Environ Microbiol. 2013 Aug;15(8):2319-32. doi: 10.1111/1462-2920.12104. Epub 2013 Mar 5.
4
Microbial life under extreme energy limitation.
Nat Rev Microbiol. 2013 Feb;11(2):83-94. doi: 10.1038/nrmicro2939.
5
Engineering strategies aimed at control of acidification rate of lactic acid bacteria.
Curr Opin Biotechnol. 2013 Apr;24(2):124-9. doi: 10.1016/j.copbio.2012.11.009. Epub 2012 Dec 19.
6
PePPER: a webserver for prediction of prokaryote promoter elements and regulons.
BMC Genomics. 2012 Jul 2;13:299. doi: 10.1186/1471-2164-13-299.
7
CcpA forms complexes with CodY and RpoA in Bacillus subtilis.
FEBS J. 2012 Jun;279(12):2201-14. doi: 10.1111/j.1742-4658.2012.08604.x. Epub 2012 May 21.
8
Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures.
FEMS Yeast Res. 2011 Dec;11(8):603-20. doi: 10.1111/j.1567-1364.2011.00750.x. Epub 2011 Sep 26.
9
Regulation of CodY activity through modulation of intracellular branched-chain amino acid pools.
J Bacteriol. 2010 Dec;192(24):6357-68. doi: 10.1128/JB.00937-10. Epub 2010 Oct 8.
10
Understanding the physiology of Lactobacillus plantarum at zero growth.
Mol Syst Biol. 2010 Sep 21;6:413. doi: 10.1038/msb.2010.67.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验