Ercan Onur, Bisschops Markus M M, Overkamp Wout, Jørgensen Thomas R, Ram Arthur F, Smid Eddy J, Pronk Jack T, Kuipers Oscar P, Daran-Lapujade Pascale, Kleerebezem Michiel
Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands NIZO food research, Ede, The Netherlands Top Institute Food and Nutrition, Wageningen, The Netherlands.
Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
Appl Environ Microbiol. 2015 Sep 1;81(17):5662-70. doi: 10.1128/AEM.00944-15. Epub 2015 Jun 5.
The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology.
目前,对于与工业相关的微生物的生理学和基因表达的认识,很大程度上基于在快速生长和高代谢活性条件下的实验室研究。然而,在自然生态系统和工业过程中,微生物经常会遇到严重的热量限制。因此,在这种环境下微生物的生长速率可能极其缓慢,甚至接近零。此外,在维持细胞完整性和活性的同时,使微生物生长与产物形成脱钩,提供了在经济上极具吸引力的前景。恒化培养已被用于研究(接近)零生长速率下的微生物生理学。本综述比较了近期关于工业相关微生物植物乳杆菌、乳酸乳球菌、枯草芽孢杆菌、酿酒酵母和黑曲霉的恒化培养的生理学和基因表达研究的信息。这些生物体对(接近)零生长速率的共同反应包括应激耐受性增加和参与蛋白质合成的基因下调。其他适应性变化,如形态和(次级)代谢产物产生的变化,则具有物种特异性。这种比较强调了进一步研究微生物(接近)零生长生理学在工业和科学上的重要性。