Efron Bradley
Stanford University.
J Am Stat Assoc. 2014 Jul 1;109(507):991-1007. doi: 10.1080/01621459.2013.823775.
Classical statistical theory ignores model selection in assessing estimation accuracy. Here we consider bootstrap methods for computing standard errors and confidence intervals that take model selection into account. The methodology involves bagging, also known as bootstrap smoothing, to tame the erratic discontinuities of selection-based estimators. A useful new formula for the accuracy of bagging then provides standard errors for the smoothed estimators. Two examples, nonparametric and parametric, are carried through in detail: a regression model where the choice of degree (linear, quadratic, cubic, …) is determined by the criterion, and a Lasso-based estimation problem.
经典统计理论在评估估计准确性时忽略了模型选择。在此,我们考虑用于计算标准误差和置信区间的自助法,该方法将模型选择纳入考量。该方法涉及装袋法,也称为自助平滑法,以驯服基于选择的估计量的不稳定不连续性。然后,一个关于装袋法准确性的有用新公式为平滑估计量提供了标准误差。详细介绍了两个例子,非参数和参数的:一个回归模型,其中次数(线性、二次、三次、……)的选择由准则决定,以及一个基于套索的估计问题。