Efron Bradley
Stanford University.
Ann Appl Stat. 2012 Oct 1;6(4):1971-1997. doi: 10.1214/12-AOAS571.
The parametric bootstrap can be used for the efficient computation of Bayes posterior distributions. Importance sampling formulas take on an easy form relating to the deviance in exponential families, and are particularly simple starting from Jeffreys invariant prior. Because of the i.i.d. nature of bootstrap sampling, familiar formulas describe the computational accuracy of the Bayes estimates. Besides computational methods, the theory provides a connection between Bayesian and frequentist analysis. Efficient algorithms for the frequentist accuracy of Bayesian inferences are developed and demonstrated in a model selection example.
参数自助法可用于贝叶斯后验分布的高效计算。重要性抽样公式具有与指数族偏差相关的简单形式,并且从杰弗里斯不变先验出发时特别简单。由于自助抽样的独立同分布性质,常见公式描述了贝叶斯估计的计算精度。除了计算方法外,该理论还提供了贝叶斯分析与频率主义分析之间的联系。在一个模型选择示例中开发并展示了用于贝叶斯推断频率主义精度的高效算法。