Shen Dan, Shen Haipeng, Bhamidi Shankar, Maldonado Yolanda Muñoz, Kim Yongdai, Marron J S
Department of Statistics and Operations Research, University of North Carolina at Chapel Hill Chapel Hill, NC 27599 ; Department of Biostatistics, University of North Carolina at Chapel Hill Chapel Hill, NC 27599.
Department of Statistics and Operations Research, University of North Carolina at Chapel Hill Chapel Hill, NC 27599.
J Comput Graph Stat. 2014;23(2):418-438. doi: 10.1080/10618600.2013.786943.
Data analysis on non-Euclidean spaces, such as tree spaces, can be challenging. The main contribution of this paper is establishment of a connection between tree data spaces and the well developed area of Functional Data Analysis (FDA), where the data objects are curves. This connection comes through two tree representation approaches, the and the . These representations of trees in Euclidean spaces enable us to exploit the power of FDA to explore statistical properties of tree data objects. A major challenge in the analysis is the sparsity of tree branches in a sample of trees. We overcome this issue by using a technique that focuses the analysis on important underlying population structures. This method parallels scale-space analysis in the sense that it reveals statistical properties of tree structured data over a range of scales. The effectiveness of these new approaches is demonstrated by some novel results obtained in the analysis of brain artery trees. The scale space analysis reveals a deeper relationship between structure and age. These methods are the first to find a statistically significant gender difference.
对非欧几里得空间(如树空间)进行数据分析可能具有挑战性。本文的主要贡献是在树数据空间与功能数据分析(FDA)这一成熟领域之间建立联系,在功能数据分析中数据对象是曲线。这种联系是通过两种树表示方法实现的,即[此处缺失具体方法名称1]和[此处缺失具体方法名称2]。树在欧几里得空间中的这些表示使我们能够利用功能数据分析的能力来探索树数据对象的统计特性。分析中的一个主要挑战是树样本中树枝的稀疏性。我们通过使用一种[此处缺失具体技术名称]技术来克服这个问题,该技术将分析重点放在重要的潜在总体结构上。这种方法在某种意义上类似于尺度空间分析,即它揭示了一系列尺度上树结构数据的统计特性。在脑动脉树分析中获得的一些新结果证明了这些新方法的有效性。尺度空间分析揭示了结构与年龄之间更深层次的关系。这些方法首次发现了具有统计学意义的性别差异。