Suppr超能文献

大型树形结构数据的统计检验

STATISTICAL TESTS FOR LARGE TREE-STRUCTURED DATA.

作者信息

Bharath Karthik, Kambadur Prabhanjan, Dey Dipak K, Rao Arvind, Baladandayuthapani Veerabhadran

机构信息

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, U.K.

Bloomberg LP, New York, NY 10022, USA.

出版信息

J Am Stat Assoc. 2017;112(520):1733-1743. doi: 10.1080/01621459.2016.1240081. Epub 2017 Aug 7.

Abstract

We develop a general statistical framework for the analysis and inference of large tree-structured data, with a focus on developing asymptotic goodness-of-fit tests. We first propose a consistent statistical model for binary trees, from which we develop a class of invariant tests. Using the model for binary trees, we then construct tests for general trees by using the distributional properties of the Continuum Random Tree, which arises as the invariant limit for a broad class of models for tree-structured data based on conditioned Galton-Watson processes. The test statistics for the goodness-of-fit tests are simple to compute and are asymptotically distributed as and random variables. We illustrate our methods on an important application of detecting tumour heterogeneity in brain cancer. We use a novel approach with tree-based representations of magnetic resonance images and employ the developed tests to ascertain tumor heterogeneity between two groups of patients.

摘要

我们开发了一个用于分析和推断大型树状结构数据的通用统计框架,重点是开发渐近拟合优度检验。我们首先为二叉树提出了一个一致的统计模型,并从中开发了一类不变检验。然后,利用二叉树模型,我们通过连续随机树的分布特性为一般树构建检验,连续随机树是基于条件高尔顿 - 沃森过程的一大类树状结构数据模型的不变极限。拟合优度检验的检验统计量易于计算,并且渐近分布为 和 随机变量。我们在检测脑癌肿瘤异质性的重要应用中展示了我们的方法。我们使用一种基于磁共振图像树状表示的新颖方法,并运用所开发的检验来确定两组患者之间的肿瘤异质性。

相似文献

1
STATISTICAL TESTS FOR LARGE TREE-STRUCTURED DATA.大型树形结构数据的统计检验
J Am Stat Assoc. 2017;112(520):1733-1743. doi: 10.1080/01621459.2016.1240081. Epub 2017 Aug 7.
3
Escape regimes of biased random walks on Galton-Watson trees.高尔顿 - 沃森树上有偏随机游走的逃逸机制。
Probab Theory Relat Fields. 2018;170(3):685-768. doi: 10.1007/s00440-017-0768-y. Epub 2017 Mar 8.
4
Functional Data Analysis of Tree Data Objects.树状数据对象的函数数据分析
J Comput Graph Stat. 2014;23(2):418-438. doi: 10.1080/10618600.2013.786943.
5
Optimal goodness-of-fit tests for recurrent event data.复发事件数据的最优拟合优度检验。
Lifetime Data Anal. 2011 Jul;17(3):409-32. doi: 10.1007/s10985-011-9193-1. Epub 2011 Mar 5.
10
Goodness-of-fit tests for a logistic regression model with missing covariates.带有缺失协变量的逻辑回归模型的拟合优度检验。
Stat Methods Med Res. 2022 Jun;31(6):1031-1050. doi: 10.1177/09622802221079350. Epub 2022 Mar 29.

引用本文的文献

3
Sparse graphs using exchangeable random measures.使用可交换随机测度的稀疏图。
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1295-1366. doi: 10.1111/rssb.12233. Epub 2017 Sep 23.

本文引用的文献

2
Functional Data Analysis of Tree Data Objects.树状数据对象的函数数据分析
J Comput Graph Stat. 2014;23(2):418-438. doi: 10.1080/10618600.2013.786943.
3
Improving tumour heterogeneity MRI assessment with histograms.利用直方图改善肿瘤异质性的磁共振成像评估
Br J Cancer. 2014 Dec 9;111(12):2205-13. doi: 10.1038/bjc.2014.512. Epub 2014 Sep 30.
5
Local RNA structure alignment with incomplete sequence.具有不完整序列的局部RNA结构比对。
Bioinformatics. 2009 May 15;25(10):1236-43. doi: 10.1093/bioinformatics/btp154. Epub 2009 Mar 20.
8
Statistical tests of neutrality of mutations.突变中性的统计检验。
Genetics. 1993 Mar;133(3):693-709. doi: 10.1093/genetics/133.3.693.
9
Tree graphs of RNA secondary structures and their comparisons.RNA二级结构的树形图及其比较。
Comput Biomed Res. 1989 Oct;22(5):461-73. doi: 10.1016/0010-4809(89)90039-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验