Suppr超能文献

基于马尔可夫分支过程的二叉树关联检验方法

Association testing for binary trees-A Markov branching process approach.

机构信息

Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA.

出版信息

Stat Med. 2022 Jun 30;41(14):2557-2573. doi: 10.1002/sim.9370. Epub 2022 Mar 9.

Abstract

We propose a new approach to test associations between binary trees and covariates. In this approach, binary-tree structured data are treated as sample paths of binary fission Markov branching processes (bMBP). We propose a generalized linear regression model and developed inference procedures for association testing, including variable selection and estimation of covariate effects. Simulation studies show that these procedures are able to accurately identify covariates that are associated with the binary tree structure by impacting the rate parameter of the bMBP. The problem of association testing on binary trees is motivated by modeling hierarchical clustering dendrograms of pixel intensities in biomedical images. By using semi-synthetic data generated from a real brain-tumor image, our simulation studies show that the bMBP model is able to capture the characteristics of dendrogram trees in brain-tumor images. Our final analysis of the glioblastoma multiforme brain-tumor data from The Cancer Imaging Archive identified multiple clinical and genetic variables that are potentially associated with brain-tumor heterogeneity.

摘要

我们提出了一种新的方法来检验二元树和协变量之间的关联。在这种方法中,二元树结构的数据被视为二元裂变马尔可夫分支过程(bMBP)的样本路径。我们提出了一种广义线性回归模型,并为关联检验开发了推断程序,包括变量选择和协变量效应的估计。模拟研究表明,这些程序能够通过影响 bMBP 的率参数准确识别与二元树结构相关的协变量。二元树关联检验的问题源于对生物医学图像中像素强度的层次聚类树状图的建模。通过使用从真实脑肿瘤图像生成的半合成数据,我们的模拟研究表明,bMBP 模型能够捕捉脑肿瘤图像中树状图的特征。我们对来自癌症成像档案的多形性胶质母细胞瘤脑肿瘤数据的最终分析确定了多个可能与脑肿瘤异质性相关的临床和遗传变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c424/9311163/7f62699e16c3/SIM-41-2557-g006.jpg

相似文献

1
Association testing for binary trees-A Markov branching process approach.
Stat Med. 2022 Jun 30;41(14):2557-2573. doi: 10.1002/sim.9370. Epub 2022 Mar 9.
2
Topology and inference for Yule trees with multiple states.
J Math Biol. 2016 Nov;73(5):1251-1291. doi: 10.1007/s00285-016-0992-6. Epub 2016 Mar 23.
3
Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.
Biometrics. 2010 Sep;66(3):753-62. doi: 10.1111/j.1541-0420.2009.01338.x.
4
Joint modeling of recurrent event processes and intermittently observed time-varying binary covariate processes.
Lifetime Data Anal. 2016 Jan;22(1):145-60. doi: 10.1007/s10985-014-9316-6. Epub 2015 Jan 9.
5
Developing a statistically powerful measure for quartet tree inference using phylogenetic identities and Markov invariants.
J Math Biol. 2017 Dec;75(6-7):1619-1654. doi: 10.1007/s00285-017-1129-2. Epub 2017 Apr 22.
6
Bayesian adjustment for covariate measurement errors: a flexible parametric approach.
Stat Med. 2009 May 15;28(11):1580-600. doi: 10.1002/sim.3552.
7
Analysis of the plant architecture via tree-structured statistical models: the hidden Markov tree models.
New Phytol. 2005 Jun;166(3):813-25. doi: 10.1111/j.1469-8137.2005.01405.x.
8
Adaptive Bayesian sum of trees model for covariate-dependent spectral analysis.
Biometrics. 2023 Sep;79(3):1826-1839. doi: 10.1111/biom.13763. Epub 2022 Oct 9.
9
Full likelihood inference from the site frequency spectrum based on the optimal tree resolution.
Theor Popul Biol. 2018 Dec;124:1-15. doi: 10.1016/j.tpb.2018.07.002. Epub 2018 Jul 23.
10
Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
Comput Methods Programs Biomed. 2019 Oct;179:104976. doi: 10.1016/j.cmpb.2019.07.004. Epub 2019 Jul 19.

引用本文的文献

1
A deep learning-driven multi-layered steganographic approach for enhanced data security.
Sci Rep. 2025 Feb 8;15(1):4761. doi: 10.1038/s41598-025-89189-5.

本文引用的文献

1
STATISTICAL TESTS FOR LARGE TREE-STRUCTURED DATA.
J Am Stat Assoc. 2017;112(520):1733-1743. doi: 10.1080/01621459.2016.1240081. Epub 2017 Aug 7.
2
Testing for dependence on tree structures.
Proc Natl Acad Sci U S A. 2020 May 5;117(18):9787-9792. doi: 10.1073/pnas.1912957117. Epub 2020 Apr 22.
4
Radiologic image-based statistical shape analysis of brain tumours.
J R Stat Soc Ser C Appl Stat. 2018 Nov;67(5):1357-1378. doi: 10.1111/rssc.12272. Epub 2018 Mar 15.
5
Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees.
Biometrika. 2017 Dec;104(4):901-922. doi: 10.1093/biomet/asx047. Epub 2017 Sep 27.
6
Fast maximum likelihood estimation of mutation rates using a birth-death process.
J Theor Biol. 2015 Feb 7;366:1-7. doi: 10.1016/j.jtbi.2014.11.009. Epub 2014 Nov 20.
7
Functional Data Analysis of Tree Data Objects.
J Comput Graph Stat. 2014;23(2):418-438. doi: 10.1080/10618600.2013.786943.
8
The integrated landscape of driver genomic alterations in glioblastoma.
Nat Genet. 2013 Oct;45(10):1141-9. doi: 10.1038/ng.2734. Epub 2013 Aug 5.
9
Genetic alteration and expression of the phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human glioblastomas.
Neuropathol Appl Neurobiol. 2005 Oct;31(5):486-90. doi: 10.1111/j.1365-2990.2005.00660.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验