Suppr超能文献

亚急性脊髓损伤后高纯度小鼠胚胎干细胞来源的祖细胞运动神经元在纤维蛋白支架中的存活、分化及迁移

Survival, Differentiation, and Migration of High-Purity Mouse Embryonic Stem Cell-derived Progenitor Motor Neurons in Fibrin Scaffolds after Sub-Acute Spinal Cord Injury.

作者信息

McCreedy D A, Wilems T S, Xu H, Butts J C, Brown C R, Smith A W, Sakiyama-Elbert S E

机构信息

Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63112, USA.

出版信息

Biomater Sci. 2014 Nov;2(11):1672-1682. doi: 10.1039/c4bm00106k.

Abstract

Embryonic stem (ES) cells can be differentiated into many neural cell types that hold great potential as cell replacement therapies following spinal cord injury (SCI). Coupling stem cell transplantation with biomaterial scaffolds can produce a unified combination therapy with several potential advantages including enhanced cell survival, greater transplant retention, reduced scarring, and improved integration at the transplant/host interface. Undesired cell types, however, are commonly present in ES-cell derived cultures due to the limited efficiency of most ES cell induction protocols. Heterogeneous cell populations can confound the interaction between the biomaterial and specific neural populations leading to undesired outcomes. In particular, biomaterials scaffolds may enhance tumor formation by promoting survival and proliferation of undifferentiated ES cells that can persist after induction. Methods for purification of specific ES cell-derived neural populations are necessary to recognize the full potential of combination therapies involving biomaterials and ES cell-derived neural populations. We previously developed a method for enriching ES cell-derived progenitor motor neurons (pMNs) induced from mouse ES cells via antibiotic selection and showed that the enriched cell populations are depleted of pluripotent stem cells. In this study, we demonstrate the survival and differentiation of enriched pMNs within three dimensional (3D) fibrin scaffolds and when transplanted into a sub-acute dorsal hemisection model of SCI into neurons, oligodendrocytes and astrocytes.

摘要

胚胎干细胞(ES细胞)可分化为多种神经细胞类型,在脊髓损伤(SCI)后作为细胞替代疗法具有巨大潜力。将干细胞移植与生物材料支架相结合可产生一种联合疗法,具有多种潜在优势,包括提高细胞存活率、增强移植细胞留存率、减少瘢痕形成以及改善移植/宿主界面处的整合。然而,由于大多数ES细胞诱导方案的效率有限,ES细胞衍生培养物中通常存在不需要的细胞类型。异质细胞群体可能会混淆生物材料与特定神经群体之间的相互作用,从而导致不良后果。特别是,生物材料支架可能会通过促进未分化ES细胞的存活和增殖来增强肿瘤形成,这些未分化的ES细胞在诱导后可能会持续存在。纯化特定ES细胞衍生神经群体的方法对于认识涉及生物材料和ES细胞衍生神经群体的联合疗法的全部潜力至关重要。我们之前开发了一种通过抗生素选择从小鼠ES细胞中富集ES细胞衍生的祖细胞运动神经元(pMNs)的方法,并表明富集的细胞群体中多能干细胞已被耗尽。在本研究中,我们证明了富集的pMNs在三维(3D)纤维蛋白支架内以及移植到SCI亚急性背侧半切模型后向神经元、少突胶质细胞和星形胶质细胞的存活和分化。

相似文献

2
7
The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds.
Stem Cell Res. 2008 Sep;1(3):205-18. doi: 10.1016/j.scr.2008.05.006. Epub 2008 Jun 10.
8
Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
Stem Cell Res Ther. 2021 Jan 7;12(1):36. doi: 10.1186/s13287-020-02090-y.

引用本文的文献

1
Revisiting the Emerging Role of Light-Based Therapies in the Management of Spinal Cord Injuries.
Mol Neurobiol. 2025 May;62(5):5891-5916. doi: 10.1007/s12035-024-04658-8. Epub 2024 Dec 10.
2
Biomaterials and Cell Therapy Combination in Central Nervous System Treatments.
ACS Appl Bio Mater. 2024 Jan 15;7(1):80-98. doi: 10.1021/acsabm.3c01058. Epub 2023 Dec 29.
3
Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury.
Int J Mol Sci. 2023 Feb 14;24(4):3824. doi: 10.3390/ijms24043824.
4
Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury.
Int J Mol Sci. 2023 Jan 28;24(3):2528. doi: 10.3390/ijms24032528.
6
A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury.
Neural Regen Res. 2021 Nov;16(11):2284-2292. doi: 10.4103/1673-5374.310698.
8
Combining ECM Hydrogels of Cardiac Bioactivity with Stem Cells of High Cardiomyogenic Potential for Myocardial Repair.
Stem Cells Int. 2019 Oct 23;2019:6708435. doi: 10.1155/2019/6708435. eCollection 2019.
9
Biomimetic Polymer-Based Engineered Scaffolds for Improved Stem Cell Function.
Materials (Basel). 2019 Sep 11;12(18):2950. doi: 10.3390/ma12182950.
10
Regenerative Therapies for Spinal Cord Injury.
Tissue Eng Part B Rev. 2019 Dec;25(6):471-491. doi: 10.1089/ten.TEB.2019.0182. Epub 2019 Oct 23.

本文引用的文献

1
A new method for generating high purity motoneurons from mouse embryonic stem cells.
Biotechnol Bioeng. 2014 Oct;111(10):2041-55. doi: 10.1002/bit.25260. Epub 2014 Jun 4.
2
Direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells using Yamanaka factors on engineered poly(ethylene glycol) (PEG) hydrogels.
Biomaterials. 2013 Sep;34(28):6559-71. doi: 10.1016/j.biomaterials.2013.05.050. Epub 2013 Jun 14.
3
Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2.
Nat Rev Neurosci. 2012 Dec;13(12):819-31. doi: 10.1038/nrn3386.
4
Long-distance growth and connectivity of neural stem cells after severe spinal cord injury.
Cell. 2012 Sep 14;150(6):1264-73. doi: 10.1016/j.cell.2012.08.020.
5
Transgenic enrichment of mouse embryonic stem cell-derived progenitor motor neurons.
Stem Cell Res. 2012 May;8(3):368-78. doi: 10.1016/j.scr.2011.12.003. Epub 2011 Dec 13.
6
Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice.
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16825-30. doi: 10.1073/pnas.1108077108. Epub 2011 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验