Suppr超能文献

轻度动态腿部运动期间增强的肌肉泵作用会抑制交感神经血管舒缩流出。

Enhanced muscle pump during mild dynamic leg exercise inhibits sympathetic vasomotor outflow.

作者信息

Katayama Keisho, Ishida Koji, Saito Mitsuru, Koike Teruhiko, Hirasawa Ai, Ogoh Shigehiko

机构信息

Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.

Faculty of Psychological and Physical Science, Aichigakuin University, Nisshin, Japan.

出版信息

Physiol Rep. 2014 Jul 16;2(7):e12070. doi: 10.14814/phy2.12070.

Abstract

Muscle sympathetic nerve activity (MSNA) is not increased during leg cycling at light and mild intensities, despite activation of central command and the exercise pressor reflex. We determined whether increasing central blood volume and loading the cardiopulmonary baroreceptors modulate sympathetic vasomotor outflow during leg cycling. To this end, we changed the pedaling frequency to enhance skeletal muscle pump. Subjects performed two leg cycle exercises at differential pedal rates of 60 and 80 rpm (60EX and 80EX trials) for two conditions (with and without MSNA measurement). In each trial, subjects completed leg cycling with a differential workload to maintain constant oxygen consumption (VO2). MSNA was recorded via microneurography at the right median nerve of the elbow. Without MSNA measurement, thoracic impedance, stroke volume (SV), and cardiac output (CO) were measured non-invasively using impedance cardiography. Heart rate and VO2 during exercise did not differ between the 60EX and 80EX trials. Changes in thoracic impedance, SV, and CO during the 80EX trial were greater than during the 60EX trial. MSNA during the 60EX trial was unchanged compared with that at rest (25.8 ± 3.1 [rest] to 28.3 ± 3.4 [exercise] bursts/min), whereas a significant decrease in MSNA was observed during the 80EX trial (25.8 ± 2.8 [rest] to 19.7 ± 2.0 [exercise] bursts/min). These results suggest that a muscle pump-induced increase in central blood volume, and thereby loading of cardiopulmonary baroreceptors, could inhibit sympathetic vasomotor outflow during mild dynamic leg exercise, despite activation of central command and the exercise pressor reflex.

摘要

尽管中枢指令和运动升压反射被激活,但在轻度和中度强度的腿部骑行过程中,肌肉交感神经活动(MSNA)并未增加。我们确定增加中心血容量和刺激心肺压力感受器是否会在腿部骑行过程中调节交感神经血管运动输出。为此,我们改变蹬踏频率以增强骨骼肌泵的作用。受试者在两种条件下(有和没有测量MSNA),以60和80转/分钟的不同蹬踏速率进行两次腿部循环运动(60EX和80EX试验)。在每次试验中,受试者以不同的工作量完成腿部骑行,以维持恒定的耗氧量(VO2)。通过微神经ography在肘部右侧正中神经记录MSNA。在没有测量MSNA的情况下,使用阻抗心动图无创测量胸段阻抗、每搏输出量(SV)和心输出量(CO)。60EX和80EX试验期间运动时的心率和VO2没有差异。80EX试验期间胸段阻抗、SV和CO的变化大于60EX试验期间。60EX试验期间的MSNA与静息时相比没有变化(静息时为25.8±3.1[次/分钟]至运动时为28.3±3.4[次/分钟]),而在80EX试验期间观察到MSNA显著降低(静息时为25.8±2.8[次/分钟]至运动时为19.7±2.0[次/分钟])。这些结果表明,尽管中枢指令和运动升压反射被激活,但在轻度动态腿部运动期间,肌肉泵引起的中心血容量增加,进而刺激心肺压力感受器,可能会抑制交感神经血管运动输出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6365/4187562/7c389b32855e/phy2-2-e12070-g1.jpg

相似文献

1
Enhanced muscle pump during mild dynamic leg exercise inhibits sympathetic vasomotor outflow.
Physiol Rep. 2014 Jul 16;2(7):e12070. doi: 10.14814/phy2.12070.
2
Hypoxia attenuates cardiopulmonary reflex control of sympathetic nerve activity during mild dynamic leg exercise.
Exp Physiol. 2016 Mar;101(3):377-86. doi: 10.1113/EP085632. Epub 2016 Jan 28.
3
Sympathetic vasomotor outflow during low-intensity leg cycling in healthy older males.
Exp Physiol. 2022 Aug;107(8):825-833. doi: 10.1113/EP090497. Epub 2022 Jul 4.
4
Respiratory modulation of sympathetic vasomotor outflow during graded leg cycling.
J Appl Physiol (1985). 2021 Aug 1;131(2):858-867. doi: 10.1152/japplphysiol.00118.2021. Epub 2021 Jul 1.
5
Muscle pump-induced inhibition of sympathetic vasomotor outflow during low-intensity leg cycling is attenuated by muscle metaboreflex activation.
J Appl Physiol (1985). 2020 Jan 1;128(1):1-7. doi: 10.1152/japplphysiol.00639.2019. Epub 2019 Nov 14.
6
High-intensity muscle metaboreflex activation attenuates cardiopulmonary baroreflex-mediated inhibition of muscle sympathetic nerve activity.
J Appl Physiol (1985). 2018 Sep 1;125(3):812-819. doi: 10.1152/japplphysiol.00161.2018. Epub 2018 Apr 19.
7
Divergent muscle sympathetic responses to dynamic leg exercise in heart failure and age-matched healthy subjects.
J Physiol. 2015 Feb 1;593(3):715-22. doi: 10.1113/jphysiol.2014.281873. Epub 2014 Dec 15.
9
Muscle sympathetic nerve responses to passive and active one-legged cycling: insights into the contributions of central command.
Am J Physiol Heart Circ Physiol. 2018 Jan 1;314(1):H3-H10. doi: 10.1152/ajpheart.00494.2017. Epub 2017 Sep 22.
10
Hypoxic effects on sympathetic vasomotor outflow and blood pressure during exercise with inspiratory resistance.
Am J Physiol Regul Integr Comp Physiol. 2013 Mar 1;304(5):R374-82. doi: 10.1152/ajpregu.00489.2012. Epub 2013 Jan 2.

引用本文的文献

1
Effects of local vibration stimulation on muscle recovery and hypertrophy.
J Phys Ther Sci. 2024 Aug;36(8):441-446. doi: 10.1589/jpts.36.441. Epub 2024 Aug 1.
2
4
Temporal Skin Temperature as an Indicator of Cardiorespiratory Fitness Assessed with Selected Methods.
Biology (Basel). 2022 Jun 21;11(7):948. doi: 10.3390/biology11070948.
6
Influence of cardiac output response to the onset of exercise on cerebral blood flow.
Eur J Appl Physiol. 2022 Aug;122(8):1939-1948. doi: 10.1007/s00421-022-04973-9. Epub 2022 Jun 4.
7
Intra-rater reliability of leg blood flow during dynamic exercise using Doppler ultrasound.
Physiol Rep. 2021 Oct;9(19):e15051. doi: 10.14814/phy2.15051.
8
High-but not moderate-intensity exercise acutely attenuates hypercapnia-induced vasodilation of the internal carotid artery in young men.
Eur J Appl Physiol. 2021 Sep;121(9):2471-2485. doi: 10.1007/s00421-021-04721-5. Epub 2021 May 24.
9
Acute exercise-related cognitive effects are not attributable to changes in end-tidal CO or cerebral blood velocity.
Eur J Appl Physiol. 2020 Jul;120(7):1637-1649. doi: 10.1007/s00421-020-04393-7. Epub 2020 May 31.
10
The exercise pressor reflex and chemoreflex interaction: cardiovascular implications for the exercising human.
J Physiol. 2020 Jun;598(12):2311-2321. doi: 10.1113/JP279456. Epub 2020 Apr 27.

本文引用的文献

1
Blood pressure regulation XI: overview and future research directions.
Eur J Appl Physiol. 2014 Mar;114(3):579-86. doi: 10.1007/s00421-014-2823-z. Epub 2014 Jan 28.
2
Hypoxic effects on sympathetic vasomotor outflow and blood pressure during exercise with inspiratory resistance.
Am J Physiol Regul Integr Comp Physiol. 2013 Mar 1;304(5):R374-82. doi: 10.1152/ajpregu.00489.2012. Epub 2013 Jan 2.
3
Inspiratory muscle fatigue increases sympathetic vasomotor outflow and blood pressure during submaximal exercise.
Am J Physiol Regul Integr Comp Physiol. 2012 May 15;302(10):R1167-75. doi: 10.1152/ajpregu.00006.2012. Epub 2012 Mar 28.
4
Human investigations into the arterial and cardiopulmonary baroreflexes during exercise.
Exp Physiol. 2012 Jan;97(1):39-50. doi: 10.1113/expphysiol.2011.057554. Epub 2011 Oct 14.
5
Hypoxia augments muscle sympathetic neural response to leg cycling.
Am J Physiol Regul Integr Comp Physiol. 2011 Aug;301(2):R456-64. doi: 10.1152/ajpregu.00119.2011. Epub 2011 May 18.
6
Muscle metaboreflex control of the circulation during exercise.
Acta Physiol (Oxf). 2010 Aug;199(4):367-83. doi: 10.1111/j.1748-1716.2010.02133.x. Epub 2010 Mar 27.
7
Effect of body tilt angle on fatigue and EMG activities in lower limbs during cycling.
Eur J Appl Physiol. 2010 Mar;108(4):649-56. doi: 10.1007/s00421-009-1254-8. Epub 2009 Nov 5.
8
Recent advances in baroreflex control of blood pressure during exercise in humans: an overview.
Med Sci Sports Exerc. 2008 Dec;40(12):2033-6. doi: 10.1249/MSS.0b013e318180bc41.
9
Modulation of the control of muscle sympathetic nerve activity during incremental leg cycling.
J Physiol. 2008 Jun 1;586(11):2753-66. doi: 10.1113/jphysiol.2007.150060. Epub 2008 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验