Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA.
Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA.
J Physiol. 2020 Jun;598(12):2311-2321. doi: 10.1113/JP279456. Epub 2020 Apr 27.
Although the exercise pressor reflex (EPR) and the chemoreflex (CR) are recognized for their sympathoexcitatory effect, the cardiovascular implication of their interaction remains elusive. We quantified the individual and interactive cardiovascular consequences of these reflexes during exercise and revealed various modes of interaction. The EPR and hypoxia-induced CR interaction is hyper-additive for blood pressure and heart rate (responses during co-activation of the two reflexes are greater than the summation of the responses evoked by each reflex) and hypo-additive for peripheral haemodynamics (responses during co-activation of the reflexes are smaller than the summated responses). The EPR and hypercapnia-induced CR interaction results in a simple addition of the individual responses to each reflex (i.e. additive interaction). Collectively, EPR:CR co-activation results in significant cardiovascular interactions with restriction in peripheral haemodynamics, resulting from the EPR:CR interaction in hypoxia, likely having the most crucial impact on the functional capacity of an exercising human.
We investigated the interactive effect of the exercise pressor reflex (EPR) and the chemoreflex (CR) on the cardiovascular response to exercise. Eleven healthy participants (5 females) completed a total of six bouts of single-leg knee-extension exercise (60% peak work rate, 4 min each) either with or without lumbar intrathecal fentanyl to attenuate group III/IV afferent feedback from lower limbs to modify the EPR, while breathing either ambient air, normocapnic hypoxia (S O ∼79%, P O ∼43 mmHg, P CO ∼33 mmHg, pH ∼7.39), or normoxic hypercapnia (S O ∼98%, P O ∼105 mmHg, P CO ∼50 mmHg, pH ∼7.26) to modify the CR. During co-activation of the EPR and the hypoxia-induced CR (O -CR), mean arterial pressure and heart rate were significantly greater, whereas leg blood flow and leg vascular conductance were significantly lower than the summation of the responses evoked by each reflex alone. During co-activation of the EPR and the hypercapnia-induced CR (CO -CR), the haemodynamic responses were not different from the summated responses to each reflex response alone (P ≥ 0.1). Therefore, while the interaction resulting from the EPR:O -CR co-activation is hyper-additive for blood pressure and heart rate, and hypo-additive for peripheral haemodynamics, the interaction resulting from the EPR:CO -CR co-activation is simply additive for all cardiovascular parameters. Thus, EPR:CR co-activation results in significant interactions between cardiovascular reflexes, with the impact differing when the CR activation is achieved by hypoxia or hypercapnia. Since the EPR:CR co-activation with hypoxia potentiates the pressor response and restricts blood flow to contracting muscles, this interaction entails the most functional impact on an exercising human.
尽管运动加压反射(EPR)和化学反射(CR)因其交感兴奋作用而被认识,但它们相互作用的心血管影响仍不清楚。我们量化了这些反射在运动过程中各自和相互的心血管后果,并揭示了各种相互作用模式。EPR 和缺氧诱导的 CR 相互作用在血压和心率方面是超相加的(两种反射共同激活时的反应大于每个反射引起的反应之和),在外周血液动力学方面是低相加的(两种反射共同激活时的反应小于总和反应)。EPR 和高碳酸血症诱导的 CR 相互作用导致对每个反射的个体反应的简单相加(即相加相互作用)。总的来说,EPR:CR 共同激活导致心血管相互作用显著,外周血液动力学受限,这是由于缺氧时 EPR:CR 相互作用引起的,可能对运动人类的功能能力产生最关键的影响。
我们研究了运动加压反射(EPR)和化学反射(CR)对运动心血管反应的相互作用。11 名健康参与者(5 名女性)共完成了 6 次单腿膝关节伸展运动(60%峰值工作率,每次 4 分钟),要么在腰部鞘内芬太尼以衰减下肢 III/IV 传入反馈的情况下进行,以改变 EPR,要么在呼吸环境空气、等碳酸缺氧(S O ∼79%,P O ∼43mmHg,P CO ∼33mmHg,pH ∼7.39)或等氧高碳酸血症(S O ∼98%,P O ∼105mmHg,P CO ∼50mmHg,pH ∼7.26)的情况下进行,以改变 CR。在 EPR 和缺氧诱导的 CR(O -CR)共同激活期间,平均动脉压和心率显著增加,而腿部血流量和腿部血管传导性显著低于每个单独反射引起的反应之和。在 EPR 和高碳酸血症诱导的 CR(CO -CR)共同激活期间,血液动力学反应与每个单独反射的总和反应没有差异(P ≥ 0.1)。因此,虽然 EPR:O -CR 共同激活引起的相互作用在血压和心率方面是超相加的,在外周血液动力学方面是低相加的,但 EPR:CO -CR 共同激活引起的相互作用在所有心血管参数方面都是简单相加的。因此,EPR:CR 共同激活导致心血管反射之间的显著相互作用,当 CR 激活是通过缺氧还是高碳酸血症实现时,其影响不同。由于 EPR:CR 共同激活与缺氧一起增强加压反应并限制收缩肌肉的血流量,因此这种相互作用对运动中的人类产生了最显著的功能影响。