State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China.
Small. 2015 Mar;11(9-10):1097-112. doi: 10.1002/smll.201402038. Epub 2014 Oct 29.
The transformation of recognition signals into regulating macroscopic behaviors of biological entities (e.g., biomolecules and cells) is an extraordinarily challenging task in engineering interfacial properties of artificial materials. Recently, there has been extensive research for dynamic biointerfaces driven by biomimetic techniques. Weak interactions and chirality are two crucial routes that nature uses to achieve its functions, including protein folding, the DNA double helix, phospholipid membranes, photosystems, and shell and tooth growths. Learning from nature inspires us to design dynamic biointerfaces, which usually take advantage of highly selective weak interactions (e.g., synergetic chiral H-bonding interactions) to tailor their molecular assemblies on external stimuli. Biomolecules can induce the conformational transitions of dynamic biointerfaces, then drive a switching of surface characteristics (topographic structure, wettability, etc.), and eventually achieve macroscopic functions. The emerging progresses of dynamic biointerfaces are reviewed and its role from molecular recognitions to biological functions highlighted. Finally, a discussion is presented of the integration of dynamic biointerfaces with the basic biochemical processes, possibly solving the big challenges in life science.
将识别信号转化为调节生物实体(例如生物分子和细胞)的宏观行为是工程人工材料界面性能的一项极具挑战性的任务。最近,人们广泛研究了受仿生技术驱动的动态生物界面。弱相互作用和手性是自然界实现其功能的两个关键途径,包括蛋白质折叠、DNA 双螺旋、磷脂膜、光合作用系统以及贝壳和牙齿的生长。从自然界中学习启发我们设计动态生物界面,这些界面通常利用高度选择性的弱相互作用(例如协同手性氢键相互作用)来根据外部刺激定制其分子组装。生物分子可以诱导动态生物界面的构象转变,然后驱动表面特性(形貌结构、润湿性等)的切换,最终实现宏观功能。本文综述了动态生物界面的最新进展,并强调了其从分子识别到生物功能的作用。最后,讨论了动态生物界面与基本生化过程的整合,这可能解决生命科学中的重大挑战。