Suppr超能文献

稳定期酵母中应激反应的恶化:Sir2和Yap1分别对于热休克和氧化应激激活Hsf1至关重要。

Deteriorated stress response in stationary-phase yeast: Sir2 and Yap1 are essential for Hsf1 activation by heat shock and oxidative stress, respectively.

作者信息

Nussbaum Inbal, Weindling Esther, Jubran Ritta, Cohen Aviv, Bar-Nun Shoshana

机构信息

Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

出版信息

PLoS One. 2014 Oct 30;9(10):e111505. doi: 10.1371/journal.pone.0111505. eCollection 2014.

Abstract

Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response.

摘要

稳定期培养物已被用作衰老的重要模型,衰老是一个涉及多种途径和信号网络的复杂过程。然而,尽管应激反应恶化是衰老的标志之一,但对于非分裂细胞应激反应的分子过程却知之甚少。出芽酵母酿酒酵母是研究衰老遗传学的有价值的模式生物,因为酵母在数天内就会衰老且易于进行基因操作。作为单细胞生物,酵母进化出了强大的系统来应对环境挑战。这种反应主要由保守的转录因子Hsf1协调,在酿酒酵母中,Hsf1可响应多种应激调节多个基因的表达。在这里,我们证明在酵母从指数生长期过渡到稳定期的过程中,Hsf1对热休克和氧化应激的反应会恶化,而葡萄糖饥饿对Hsf1的激活作用则得以维持。过表达Hsf1并不能显著改善热休克反应,这表明Hsf1的减少并不是稳定期酵母中Hsf1反应减弱的主要原因。相反,参与Hsf1激活的因子似乎受到了损害。我们发现了两个因子Yap1和Sir2,它们分别在氧化应激和热休克激活Hsf1的过程中发挥作用。在Δyap1突变体中,Hsf1对氧化应激无反应,而在Δsir2突变体中,Hsf1对热休克无反应。此外,过量的Sir2可模拟热休克反应。我们发现补充NAD+前体可改善稳定期酵母中Hsf1的热休克反应,尤其是与过量Sir2的表达相结合时,这支持了NAD+依赖性Sir2的这一作用。最后,过量的Hsf1、过量的Sir2和NAD+前体的组合可恢复热休克反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e540/4214751/1dc909927203/pone.0111505.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验