Suppr超能文献

酿酒酵母的Skn7应答调节因子在体内与Hsf1相互作用,并且是氧化应激诱导热休克基因所必需的。

The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.

作者信息

Raitt D C, Johnson A L, Erkine A M, Makino K, Morgan B, Gross D S, Johnston L H

机构信息

Division of Yeast Genetics, National Institute for Medical Research, The Ridgeway, London NW7 1AA, United Kingdom.

出版信息

Mol Biol Cell. 2000 Jul;11(7):2335-47. doi: 10.1091/mbc.11.7.2335.

Abstract

The Skn7 response regulator has previously been shown to play a role in the induction of stress-responsive genes in yeast, e.g., in the induction of the thioredoxin gene in response to hydrogen peroxide. The yeast Heat Shock Factor, Hsf1, is central to the induction of another set of stress-inducible genes, namely the heat shock genes. These two regulatory trans-activators, Hsf1 and Skn7, share certain structural homologies, particularly in their DNA-binding domains and the presence of adjacent regions of coiled-coil structure, which are known to mediate protein-protein interactions. Here, we provide evidence that Hsf1 and Skn7 interact in vitro and in vivo and we show that Skn7 can bind to the same regulatory sequences as Hsf1, namely heat shock elements. Furthermore, we demonstrate that a strain deleted for the SKN7 gene and containing a temperature-sensitive mutation in Hsf1 is hypersensitive to oxidative stress. Our data suggest that Skn7 and Hsf1 cooperate to achieve maximal induction of heat shock genes in response specifically to oxidative stress. We further show that, like Hsf1, Skn7 can interact with itself and is localized to the nucleus under normal growth conditions as well as during oxidative stress.

摘要

此前已表明,Skn7反应调节因子在酵母中应激反应基因的诱导过程中发挥作用,例如在过氧化氢诱导硫氧还蛋白基因的过程中。酵母热休克因子Hsf1对于另一组应激诱导基因(即热休克基因)的诱导至关重要。这两种调节性反式激活因子Hsf1和Skn7具有某些结构同源性,特别是在它们的DNA结合结构域以及存在已知介导蛋白质-蛋白质相互作用的相邻卷曲螺旋结构区域方面。在这里,我们提供证据表明Hsf1和Skn7在体外和体内相互作用,并且我们表明Skn7可以与Hsf1结合相同的调控序列,即热休克元件。此外,我们证明缺失SKN7基因且在Hsf1中含有温度敏感突变的菌株对氧化应激高度敏感。我们的数据表明,Skn7和Hsf1协同作用,以实现热休克基因在对氧化应激的特异性反应中的最大诱导。我们进一步表明,与Hsf1一样,Skn7可以自身相互作用,并且在正常生长条件下以及氧化应激期间定位于细胞核。

相似文献

3
Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast.
J Biol Chem. 2019 Aug 9;294(32):12191-12202. doi: 10.1074/jbc.RA119.008822. Epub 2019 Jun 25.
4
A novel domain of the yeast heat shock factor that regulates its activation function.
Biochem Biophys Res Commun. 2001 Jul 20;285(3):696-701. doi: 10.1006/bbrc.2001.5234.
9
Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
Mol Biol Cell. 2018 Dec 15;29(26):3168-3182. doi: 10.1091/mbc.E18-06-0353. Epub 2018 Oct 17.

引用本文的文献

1
Multifaceted roles of mammalian heat shock factor 1 in the central nervous system.
Cell Stress Chaperones. 2025 Aug 15;30(5):100109. doi: 10.1016/j.cstres.2025.100109.
2
Mechanisms and Strategies for Engineering Oxidative Stress Resistance in .
Chem Bio Eng. 2025 May 29;2(7):409-422. doi: 10.1021/cbe.5c00021. eCollection 2025 Jul 24.
3
Single-cell imaging of protein dynamics of paralogs reveals sources of gene retention.
iScience. 2025 May 27;28(7):112771. doi: 10.1016/j.isci.2025.112771. eCollection 2025 Jul 18.
4
6
Low overlap of transcription factor DNA binding and regulatory targets.
Nature. 2025 Apr 16. doi: 10.1038/s41586-025-08916-0.
7
When HSFs bring the heat-mapping the transcriptional circuitries of HSF-type regulators in .
mSphere. 2025 Jan 28;10(1):e0064423. doi: 10.1128/msphere.00644-23. Epub 2024 Dec 20.
9
Natural variation in yeast reveals multiple paths for acquiring higher stress resistance.
BMC Biol. 2024 Jul 4;22(1):149. doi: 10.1186/s12915-024-01945-7.
10
LowTempGAL: a highly responsive low temperature-inducible GAL system in Saccharomyces cerevisiae.
Nucleic Acids Res. 2024 Jul 8;52(12):7367-7383. doi: 10.1093/nar/gkae460.

本文引用的文献

1
Molecular chaperones: towards a characterization of the heat-shock protein 70 family.
Trends Cell Biol. 1997 Mar;7(3):129-33. doi: 10.1016/S0962-8924(96)10056-8.
3
Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast.
J Biol Chem. 1999 Jun 4;274(23):16040-6. doi: 10.1074/jbc.274.23.16040.
5
Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.
Mol Cell Biol. 1999 Mar;19(3):1627-39. doi: 10.1128/MCB.19.3.1627.
8
Cooperative and competitive protein interactions at the hsp70 promoter.
J Biol Chem. 1997 Dec 26;272(52):33227-33. doi: 10.1074/jbc.272.52.33227.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验