Suppr超能文献

窒息足月儿自动背景脑电图评估的整体方法

Holistic approach for automated background EEG assessment in asphyxiated full-term infants.

作者信息

Matic Vladimir, Cherian Perumpillichira J, Koolen Ninah, Naulaers Gunnar, Swarte Renate M, Govaert Paul, Van Huffel Sabine, De Vos Maarten

机构信息

KU Leuven, Department of Electrical Engineering (ESAT) STADIUS Centre for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium. iMinds Medical IT Department, Leuven, Belgium.

出版信息

J Neural Eng. 2014 Dec;11(6):066007. doi: 10.1088/1741-2560/11/6/066007. Epub 2014 Oct 31.

Abstract

OBJECTIVE

To develop an automated algorithm to quantify background EEG abnormalities in full-term neonates with hypoxic ischemic encephalopathy.

APPROACH

The algorithm classifies 1 h of continuous neonatal EEG (cEEG) into a mild, moderate or severe background abnormality grade. These classes are well established in the literature and a clinical neurophysiologist labeled 272 1 h cEEG epochs selected from 34 neonates. The algorithm is based on adaptive EEG segmentation and mapping of the segments into the so-called segments' feature space. Three features are suggested and further processing is obtained using a discretized three-dimensional distribution of the segments' features represented as a 3-way data tensor. Further classification has been achieved using recently developed tensor decomposition/classification methods that reduce the size of the model and extract a significant and discriminative set of features.

MAIN RESULTS

Effective parameterization of cEEG data has been achieved resulting in high classification accuracy (89%) to grade background EEG abnormalities.

SIGNIFICANCE

For the first time, the algorithm for the background EEG assessment has been validated on an extensive dataset which contained major artifacts and epileptic seizures. The demonstrated high robustness, while processing real-case EEGs, suggests that the algorithm can be used as an assistive tool to monitor the severity of hypoxic insults in newborns.

摘要

目的

开发一种自动算法,用于量化足月新生儿缺氧缺血性脑病的背景脑电图异常。

方法

该算法将1小时的连续新生儿脑电图(cEEG)分为轻度、中度或重度背景异常等级。这些等级在文献中已有明确界定,一名临床神经生理学家对从34名新生儿中选取的272个1小时cEEG时段进行了标注。该算法基于自适应脑电图分割以及将这些片段映射到所谓的片段特征空间。提出了三个特征,并使用表示为三向数据张量的片段特征的离散化三维分布进行进一步处理。使用最近开发的张量分解/分类方法实现了进一步分类,该方法减小了模型大小并提取了一组重要且有区分性的特征。

主要结果

实现了cEEG数据的有效参数化,对背景脑电图异常等级的分类准确率较高(89%)。

意义

首次在包含主要伪迹和癫痫发作的广泛数据集上验证了背景脑电图评估算法。在处理实际脑电图时所展示出的高稳健性表明,该算法可作为辅助工具用于监测新生儿缺氧损伤的严重程度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验