Suppr超能文献

基于主体的人类肺泡模型预测烟曲霉早期感染期间上皮细胞的趋化信号传导。

Agent-based model of human alveoli predicts chemotactic signaling by epithelial cells during early Aspergillus fumigatus infection.

作者信息

Pollmächer Johannes, Figge Marc Thilo

机构信息

Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany.

出版信息

PLoS One. 2014 Oct 31;9(10):e111630. doi: 10.1371/journal.pone.0111630. eCollection 2014.

Abstract

Aspergillus fumigatus is one of the most important human fungal pathogens, causing life-threatening diseases. Since humans inhale hundreds to thousands of fungal conidia every day, the lower respiratory tract is the primary site of infection. Current interaction networks of the innate immune response attribute fungal recognition and detection to alveolar macrophages, which are thought to be the first cells to get in contact with the fungus. At present, these networks are derived from in vitro or in situ assays, as the peculiar physiology of the human lung makes in vivo experiments, including imaging on the cell-level, hard to realize. We implemented a spatio-temporal agent-based model of a human alveolus in order to perform in silico experiments of a virtual infection scenario, for an alveolus infected with A. fumigatus under physiological conditions. The virtual analog captures the three-dimensional alveolar morphology consisting of the two major alveolar epithelial cell types and the pores of Kohn as well as the dynamic process of respiration. To the best of our knowledge this is the first agent-based model of a dynamic human alveolus in the presence of respiration. A key readout of our simulations is the first-passage-time of alveolar macrophages, which is the period of time that elapses until the first physical macrophage-conidium contact is established. We tested for random and chemotactic migration modes of alveolar macrophages and varied their corresponding parameter sets. The resulting first-passage-time distributions imply that randomly migrating macrophages fail to find the conidium before the start of germination, whereas guidance by chemotactic signals derived from the alveolar epithelial cell associated with the fungus enables a secure and successful discovery of the pathogen in time.

摘要

烟曲霉是最重要的人类真菌病原体之一,可引发危及生命的疾病。由于人类每天会吸入数百到数千个真菌分生孢子,下呼吸道是主要的感染部位。目前,固有免疫反应的相互作用网络将真菌的识别和检测归因于肺泡巨噬细胞,肺泡巨噬细胞被认为是最先接触真菌的细胞。目前,这些网络来自体外或原位试验,因为人类肺部特殊的生理结构使得体内实验,包括细胞水平的成像,难以实现。我们构建了一个基于时空代理的人肺泡模型,以便在生理条件下对感染烟曲霉的肺泡进行虚拟感染场景的计算机模拟实验。该虚拟模型捕捉了由两种主要肺泡上皮细胞类型和孔氏孔组成的三维肺泡形态以及呼吸的动态过程。据我们所知,这是第一个存在呼吸情况下的动态人肺泡的基于代理的模型。我们模拟的一个关键输出是肺泡巨噬细胞的首次通过时间,即从开始到首次建立巨噬细胞与分生孢子实际接触所经过的时间段。我们测试了肺泡巨噬细胞的随机迁移模式和趋化迁移模式,并改变了它们相应的参数集。由此产生的首次通过时间分布表明,随机迁移的巨噬细胞在孢子萌发开始前无法找到分生孢子,而来自与真菌相关的肺泡上皮细胞的趋化信号引导能够及时安全且成功地发现病原体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aa0/4216106/2bf7b5a824a2/pone.0111630.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验