Haim Lev, Hagberg Aric, Nagao Raphael, Steinberg Asher Preska, Dolnik Milos, Epstein Irving R, Meron Ehud
Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Phys Chem Chem Phys. 2014 Dec 21;16(47):26137-43. doi: 10.1039/c4cp04261a. Epub 2014 Oct 31.
We use the CDIMA chemical reaction and the Lengyel-Epstein model of this reaction to study resonant responses of a pattern-forming system to time-independent spatial periodic forcing. We focus on the 2 : 1 resonance, where the wavenumber of a one-dimensional periodic forcing is about twice the wavenumber of the natural stripe pattern that the unforced system tends to form. Within this resonance, we study transverse fronts that shift the phase of resonant stripe patterns by π. We identify phase fronts that shift the phase discontinuously, and pairs of phase fronts that shift the phase continuously, clockwise and anti-clockwise. We further identify a front bifurcation that destabilizes the discontinuous front and leads to a pair of continuous fronts. This bifurcation is the spatial counterpart of the nonequilibrium Ising-Bloch (NIB) bifurcation in temporally forced oscillatory systems. The spatial NIB bifurcation that we find occurs as the forcing strength is increased, unlike earlier studies of the NIB bifurcation. Furthermore, the bifurcation is subcritical, implying a range of forcing strength where both discontinuous Ising fronts and continuous Bloch fronts are stable. Finally, we find that both Ising fronts and Bloch fronts can form discrete families of bound pairs, and we relate arrays of these front pairs to extended rectangular and oblique patterns.
我们使用CDIMA化学反应及其Lengyel - Epstein模型来研究一个图案形成系统对与时间无关的空间周期强迫的共振响应。我们关注2∶1共振,其中一维周期强迫的波数大约是无强迫系统倾向于形成的自然条纹图案波数的两倍。在这种共振情况下,我们研究使共振条纹图案的相位移动π的横向前沿。我们识别出使相位发生不连续移动的相位前沿,以及使相位连续移动的顺时针和逆时针的相位前沿对。我们进一步识别出一种前沿分岔,它使不连续前沿失稳并导致一对连续前沿。这种分岔是时间强迫振荡系统中非平衡伊辛 - 布洛赫(NIB)分岔的空间对应物。与早期对NIB分岔的研究不同,我们发现的空间NIB分岔是在强迫强度增加时出现的。此外,这种分岔是亚临界的,这意味着在一定范围的强迫强度下,不连续的伊辛前沿和连续的布洛赫前沿都是稳定的。最后,我们发现伊辛前沿和布洛赫前沿都可以形成离散系列的束缚对,并且我们将这些前沿对的阵列与扩展的矩形和倾斜图案联系起来。