Suppr超能文献

周期性强迫振荡系统中的多相模式。

Multiphase patterns in periodically forced oscillatory systems.

作者信息

Elphick C, Hagberg A, Meron E

机构信息

Centro de Fisica No Lineal y Sistemas Complejos de Santiago, Casilla 17122, Santiago, Chile.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt A):5285-91. doi: 10.1103/physreve.59.5285.

Abstract

Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of pi/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: pi fronts separating states with a phase shift of pi and pi/2 fronts separating states with a phase shift of pi/2. We find a type of front instability where a stationary pi front "decomposes" into a pair of traveling pi/2 fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of pi/2 fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4, em leader) where stationary pi fronts decompose into n traveling pi/n fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased.

摘要

对振荡系统施加周期性强迫会产生频率锁定带,在该频率带内系统频率与强迫频率呈有理关系。我们研究了扩展振荡系统,该系统在强迫频率的四分之一处(4:1共振)对均匀周期性强迫做出响应。这些系统具有四个共存的稳定状态,对应于具有连续π/2相移的均匀振荡。利用接近均匀振荡的霍普夫分岔处的振幅方程方法,我们研究了连接不同相位状态的前沿解。这些解分为两组:分离相位差为π的状态的π前沿和分离相位差为π/2的状态的π/2前沿。我们发现了一种前沿不稳定性,即随着强迫强度降低,静止的π前沿“分解”为一对传播的π/2前沿。对于具有三次非线性的振幅方程,这种不稳定性是简并的。在不稳定性点存在一族连续的对解,由间距从零到无穷大的π/2前沿组成。五次非线性消除了不稳定性点处的简并,但不改变不稳定性的基本性质。我们推测在更高的2n:1共振(n = 3, 4, …)中存在类似的不稳定性,其中静止的π前沿分解为n个传播的π/n前沿。这些不稳定性标志着从静止的两相模式到传播的2n相模式的转变。例如,我们通过数值解证明,随着4:1共振内的强迫强度增加,四相螺旋波会坍缩为静止的两相模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验