Lee Ju Young, Kang Chang Duk, Lee Seung Hyun, Park Young Kyoung, Cho Kwang Myung
Biomaterials Laboratory, Samsung Advanced Institute of Technology, Gyeonggi-do, Korea.
Biotechnol Bioeng. 2015 Apr;112(4):751-8. doi: 10.1002/bit.25488. Epub 2015 Jan 16.
Owing to the growing market for the biodegradable and renewable polymer, polylactic acid, world demand for lactic acid is rapidly increasing. However, the very high concentrations desired for industrial production of the free lactic acid create toxicity and low pH concerns for manufacturers. Saccharomyces cerevisiae is the most well characterized eukaryote, a preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust, commercially compatible workhorse to be exploited for the production of diverse chemicals. S. cerevisiae has also been explored as a host for lactic acid production because of its high acid tolerance. Here, we constructed an L-lactic acid-overproducing S. cerevisiae by redirecting cellular metabolic fluxes to the production of L-lactic acid. To this end, we deleted the S. cerevisiae genes encoding pyruvate decarboxylase 1 (PDC1), L-lactate cytochrome-c oxidoreductase (CYB2), and glycerol-3-phosphate dehydrogenase (GPD1), replacing them with a heterologous L-lactate dehydrogenase (LDH) gene. Two new target genes encoding isoenzymes of the external NADH dehydrogenase (NDE1 and NDE2), were also deleted from the genome to re-engineer the intracellular redox balance. The resulting strain was found to produce L-lactic acid more efficiently (32.6% increase in final L-lactic acid titer). When tested in a bioreactor in fed-batch mode, this engineered strain produced 117 g/L of L-lactic acid under low pH conditions. This result demonstrates that the redox balance engineering should be coupled with the metabolic engineering in the construction of L-lactic acid-overproducing S. cerevisiae.
由于可生物降解和可再生聚合物聚乳酸的市场不断增长,全球对乳酸的需求正在迅速增加。然而,工业生产游离乳酸所需的极高浓度给制造商带来了毒性和低pH值方面的担忧。酿酒酵母是特征最明确的真核生物,是最大的工业生物技术产品(生物乙醇)首选的微生物细胞工厂,也是一种强大的、商业上兼容的用于生产多种化学品的主力菌株。由于酿酒酵母具有高耐酸性,它也被探索用作乳酸生产的宿主。在此,我们通过将细胞代谢通量重定向至L-乳酸的生产,构建了一株过量生产L-乳酸的酿酒酵母。为此,我们删除了酿酒酵母中编码丙酮酸脱羧酶1(PDC1)、L-乳酸细胞色素c氧化还原酶(CYB2)和甘油-3-磷酸脱氢酶(GPD1)的基因,并用一个异源L-乳酸脱氢酶(LDH)基因取而代之。还从基因组中删除了两个编码细胞外NADH脱氢酶同工酶的新靶基因(NDE1和NDE2),以重新设计细胞内的氧化还原平衡。结果发现,所得菌株能更高效地生产L-乳酸(最终L-乳酸滴度提高了32.6%)。在分批补料模式的生物反应器中进行测试时,这种工程菌株在低pH条件下产生了117 g/L的L-乳酸。这一结果表明,在构建过量生产L-乳酸的酿酒酵母时,氧化还原平衡工程应与代谢工程相结合。