Suppr超能文献

预测气候变化对中国主要本土非粮食生物能源植物潜在分布的影响。

Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China.

作者信息

Wang Wenguo, Tang Xiaoyu, Zhu Qili, Pan Ke, Hu Qichun, He Mingxiong, Li Jiatang

机构信息

Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu, 610064, P.R. China.

Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610064, P.R. China.

出版信息

PLoS One. 2014 Nov 3;9(11):e111587. doi: 10.1371/journal.pone.0111587. eCollection 2014.

Abstract

Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (viz., Pistacia chinensis, Cornus wilsoniana, Xanthoceras sorbifolia, Vernicia fordii, Sapium sebiferum, Miscanthus sinensis, M. floridulus, M. sacchariflorus and Arundo donax) were analyzed using a MaxEnt species distribution model. The suitable habitats of the nine non-food plants were distributed in the regions east of the Mongolian Plateau and the Tibetan Plateau, where the arable land is primarily used for food production. Thus, the large-scale cultivation of those plants for energy production will have to rely on the marginal lands. The variables of "precipitation of the warmest quarter" and "annual mean temperature" were the most important bioclimatic variables for most of the nine plants according to the MaxEnt modeling results. Global warming in coming decades may result in a decrease in the extent of suitable habitat in the tropics but will have little effect on the total distribution area of each plant. The results indicated that it will be possible to grow these plants on marginal lands within these areas in the future. This work should be beneficial for the domestication and cultivation of those bioenergy plants and should facilitate land-use planning for bioenergy crops in China.

摘要

在中国,在边际土地上种植非粮食生物能源作物是一种替代性生物能源发展解决方案。本土非粮食生物能源植物也被认为是减少外来入侵植物威胁的明智选择。在本研究中,利用最大熵物种分布模型分析了气候变化(政府间气候变化专门委员会A2a情景对2080年的共识)对中国本土9种非粮食生物能源植物(即黄连木、光皮梾木、文冠果、油桐、乌桕、芒草、五节芒、荻和芦竹)潜在分布的影响。这9种非粮食植物的适宜栖息地分布在蒙古高原和青藏高原以东地区,这些地区的耕地主要用于粮食生产。因此,大规模种植这些植物用于能源生产将不得不依赖边际土地。根据最大熵模型结果,“最暖季度降水量”和“年平均温度”变量是这9种植物中大多数植物最重要的生物气候变量。未来几十年的全球变暖可能导致热带地区适宜栖息地范围缩小,但对每种植物的总分布面积影响不大。结果表明,未来有可能在这些地区的边际土地上种植这些植物。这项工作应有利于这些生物能源植物的驯化和种植,并应促进中国生物能源作物的土地利用规划。

相似文献

1
Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China.
PLoS One. 2014 Nov 3;9(11):e111587. doi: 10.1371/journal.pone.0111587. eCollection 2014.
3
Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming.
BMC Ecol. 2020 May 9;20(1):28. doi: 10.1186/s12898-020-00295-6.
4
The impact of global warming on the potential suitable planting area of Pistacia chinensis is limited.
Sci Total Environ. 2023 Mar 15;864:161007. doi: 10.1016/j.scitotenv.2022.161007. Epub 2022 Dec 20.
6
Simulation of climate change effect on the global distribution of .
Ying Yong Sheng Tai Xue Bao. 2024 Jul 18;35(7):1897-1906. doi: 10.13287/j.1001-9332.202407.022.
7
[Predictions of potential geographical distribution of Alhagi sparsifolia under climate change].
Zhongguo Zhong Yao Za Zhi. 2017 Feb;42(3):450-455. doi: 10.19540/j.cnki.cjcmm.20170103.004.
10
Prediction of the potential geographical distribution of Betula platyphylla Suk. in China under climate change scenarios.
PLoS One. 2022 Mar 31;17(3):e0262540. doi: 10.1371/journal.pone.0262540. eCollection 2022.

引用本文的文献

1
Forecasting Northward Range Expansion of Switchgrass in China via Multi-Scenario MaxEnt Simulations.
Biology (Basel). 2025 Aug 15;14(8):1061. doi: 10.3390/biology14081061.
2
Predicting the dynamic distribution of Sphagnum bogs in China under climate change since the last interglacial period.
PLoS One. 2020 Apr 6;15(4):e0230969. doi: 10.1371/journal.pone.0230969. eCollection 2020.
6
Glacial Refugia and Future Habitat Coverage of Selected Dactylorhiza Representatives (Orchidaceae).
PLoS One. 2015 Nov 23;10(11):e0143478. doi: 10.1371/journal.pone.0143478. eCollection 2015.

本文引用的文献

2
Plant invasions in China - challenges and chances.
PLoS One. 2013 May 14;8(5):e64173. doi: 10.1371/journal.pone.0064173. Print 2013.
3
The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models.
PLoS One. 2013;8(2):e55158. doi: 10.1371/journal.pone.0055158. Epub 2013 Feb 14.
4
Sustainable bioenergy production from marginal lands in the US Midwest.
Nature. 2013 Jan 24;493(7433):514-7. doi: 10.1038/nature11811. Epub 2013 Jan 16.
5
Global bioenergy potential from high-lignin agricultural residue.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):4014-9. doi: 10.1073/pnas.1112757109. Epub 2012 Feb 21.
6
Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst.
Bioresour Technol. 2012 Mar;108:112-8. doi: 10.1016/j.biortech.2011.12.129. Epub 2012 Jan 4.
7
Major energy plants and their potential for bioenergy development in China.
Environ Manage. 2010 Oct;46(4):579-89. doi: 10.1007/s00267-010-9443-0. Epub 2010 Feb 17.
8
Marginal land-based biomass energy production in China.
J Integr Plant Biol. 2010 Jan;52(1):112-21. doi: 10.1111/j.1744-7909.2010.00903.x.
9
Assessing biofuel crop invasiveness: a case study.
PLoS One. 2009;4(4):e5261. doi: 10.1371/journal.pone.0005261. Epub 2009 Apr 22.
10
Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) "reasons for concern".
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4133-7. doi: 10.1073/pnas.0812355106. Epub 2009 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验