Suppr超能文献

Isolated iron-molybdenum cofactor of nitrogenase exists in multiple forms in its oxidized and semi-reduced states.

作者信息

Newton W E, Gheller S F, Feldman B J, Dunham W R, Schultz F A

机构信息

Western Regional Research Center, United States Department of Agriculture-Agriculture Research Service, Albany, California 94710.

出版信息

J Biol Chem. 1989 Feb 5;264(4):1924-7.

PMID:2536693
Abstract

Electrochemical and EPR spectroscopic experiments demonstrate that the isolated iron-molybdenum cofactor from the molybdenum-iron protein of nitrogenase from Azotobacter vinelandii exists in multiple forms in both its oxidized and semi-reduced states. The particular forms found in either oxidation state appear to be a function of the acid/base status of the solvent, N-methylformamide. In "alkaline" N-methylformamide, a single, detectable form of iron-molybdenum cofactor is observed for both oxidized and semi-reduced states. The semi-reduced form, termed R(s-r), is the one previously recognized with an S = 3/2 EPR spectrum with apparent g values of 4.6, 3.4, 2.0. Its oxidized counterpart, termed B(ox), is characterized electrochemically by a differential pulse voltammetric reduction peak at -0.37 V versus the normal hydrogen electrode. In "acidic" solvent, two distinct, previously unrecognized redox pairs of iron-molybdenum cofactor forms exist. The two semi-reduced forms, N(s-r) and W(s-r), are characterized by EPR spectra with g = 4.5, 3.6, 2.0 and g = 4.9, 3.1, 1.9, respectively. Their oxidized counterparts, A(ox) and C(ox), have differential pulse voltammetric reduction peaks at -0.32 and -0.43 V versus the normal hydrogen electrode, respectively. Manipulations of either the isolation protocol or the sample conditions affects both the type and distribution of forms present. Each form likely corresponds to a biologically significant state of the cofactor cluster within the protein.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验