Suppr超能文献

Fluorine-19 chemical shifts as probes of the structure and reactivity of the iron-molybdenum cofactor of nitrogenase.

作者信息

Conradson S D, Burgess B K, Holm R H

机构信息

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138.

出版信息

J Biol Chem. 1988 Sep 25;263(27):13743-9.

PMID:2843534
Abstract

The reaction of the iron-molybdenum cofactor with thiolate and the redox behavior of the iron-molybdenum cofactor-thiolate complex have been studied by 19F NMR using p-CF3C6H4S- as the reporter ligand. These experiments give results different from those produced by other methods which have been performed near 4 K rather than at ambient temperature. Specifically, these data show that the iron-molybdenum cofactor-thiolate complex is not the product of an irreversible reaction. Rather, the complex is in dynamic equilibrium with the free iron-molybdenum cofactor and free thiolate. Models of the reactions of nitrogenase may need to take this temperature-dependent difference into account because the lability of the iron-molybdenum thiolate bond means its making and breaking could be involved in substrate binding or reduction. The 19F NMR results reported here also show that the S = 3/2 state of the iron-molybdenum cofactor-thiolate complex can be easily and reversibly oxidized by one electron. However, electron exchange between the oxidized and reduced states of the complex is quite slow at approximately 1 mM. Based on low temperature spectroscopic studies, the oxidized iron-molybdenum cofactor-thiolate complex was expected to be diamagnetic. Isotropically shifted NMR spectra of the oxidized cofactor samples at 240-320 K, however, indicate at least partial population of a paramagnetic state, possibly with S = 1.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验