Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University , Princetonplein 5, 3584 CC Utrecht, The Netherlands.
J Am Chem Soc. 2014 Nov 26;136(47):16533-43. doi: 10.1021/ja5076663. Epub 2014 Nov 12.
The incorporation of dopants with optical or magnetic functionalities into colloidal nanocrystals (NCs) has been a longstanding challenge for nanomaterial research. A deeper understanding of the doping kinetics will aid a better control of the doping process. In particular, alkaline-earth sulfides are an important class of host materials for a range of luminescent dopants, including transition-metal and lanthanide ions. Their nanocrystalline analogues have many potential applications. However, the lack of synthetic methodologies hampers their development. Here we introduce a single-source precursor approach that successfully leads to Ce(3+)- and Eu(2+)-doped CaS and SrS luminescent NCs with diameters of ∼10 nm and with luminescent properties similar to those of the bulk analogues. The characteristic absorption and luminescence of Ce(3+) and Eu(2+) depend on the local coordination and are applied to probe dopant ion internalization. We demonstrate that controlling the reactivity of the precursors is crucial for achieving effective doping. By designing the chemical structure of the dopant precursor to vary the reactivity relative to that of the host precursor, the doping efficiency can be controlled. In addition, we have applied a growth doping strategy to further improve internalization of the dopants. Finally, we demonstrate nucleation doping as an alternative method to achieve lanthanide NC doping for dopant and host precursors with strongly different reactivities. The single-source precursor approaches proposed here allow for a flexible design of synthesis strategies and have the potential to be widely applicable to the doping of colloidal chalcogenide NCs with transition-metal and lanthanide dopant ions.
将具有光学或磁性功能的掺杂剂掺入胶体纳米晶体(NCs)中一直是纳米材料研究的长期挑战。对掺杂动力学的更深入了解将有助于更好地控制掺杂过程。特别是,碱土金属硫化物是一系列发光掺杂剂(包括过渡金属和镧系离子)的重要宿主材料。它们的纳米晶体类似物有许多潜在的应用。然而,缺乏合成方法学阻碍了它们的发展。在这里,我们介绍了一种单源前体方法,该方法成功地导致 Ce(3+)和 Eu(2+)掺杂的 CaS 和 SrS 发光 NCs 的直径约为 10nm,并且具有与体类似物相似的发光性能。Ce(3+)和 Eu(2+)的特征吸收和发光取决于局部配位,并应用于探测掺杂离子的内化。我们证明控制前体的反应性对于实现有效的掺杂至关重要。通过设计掺杂剂前体的化学结构,使其相对于宿主前体的反应性发生变化,可以控制掺杂效率。此外,我们还应用了一种生长掺杂策略来进一步提高掺杂剂的内化程度。最后,我们证明了成核掺杂是一种替代方法,可以实现具有强烈不同反应性的镧系元素 NC 掺杂。这里提出的单源前体方法允许灵活设计合成策略,并有可能广泛应用于过渡金属和镧系掺杂剂离子掺杂胶体硫属化物 NCs。