Suppr超能文献

利用在线搜索数据对美国每月食品券数据进行临近预报和预测。

Nowcasting and forecasting the monthly food stamps data in the US using online search data.

作者信息

Fantazzini Dean

机构信息

Moscow School of Economics, Moscow State University, Moscow, Russia.

出版信息

PLoS One. 2014 Nov 4;9(11):e111894. doi: 10.1371/journal.pone.0111894. eCollection 2014.

Abstract

We propose the use of Google online search data for nowcasting and forecasting the number of food stamps recipients. We perform a large out-of-sample forecasting exercise with almost 3000 competing models with forecast horizons up to 2 years ahead, and we show that models including Google search data statistically outperform the competing models at all considered horizons. These results hold also with several robustness checks, considering alternative keywords, a falsification test, different out-of-samples, directional accuracy and forecasts at the state-level.

摘要

我们建议使用谷歌在线搜索数据来对食品券领取者数量进行即时预测和预测。我们用近3000个竞争模型进行了一次大规模的样本外预测练习,预测期长达未来两年,并且我们表明,在所有考虑的预测期内,包含谷歌搜索数据的模型在统计上优于竞争模型。在考虑替代关键词、证伪检验、不同的样本外数据、方向准确性以及州一级的预测等多项稳健性检验下,这些结果依然成立。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6b9/4219814/272e9aa4aaca/pone.0111894.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验