Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, U.K.
Marine Environment and Sustainable Development Unit ENEA, PO Box 224, 19100 La Spezia, Italy.
Biol Rev Camb Philos Soc. 2015 Nov;90(4):1118-50. doi: 10.1111/brv.12148. Epub 2014 Nov 4.
Many animal phyla have the physiological ability to produce biomineralized skeletons with functional roles that have been shaped by natural selection for more than 500 million years. Among these are bryozoans, a moderately diverse phylum of aquatic invertebrates with a rich fossil record and importance today as bioconstructors in some shallow-water marine habitats. Biomineralizational patterns and, especially, processes are poorly understood in bryozoans but are conventionally believed to be similar to those of the related lophotrochozoan phyla Brachiopoda and Mollusca. However, bryozoan skeletons are more intricate than those of these two phyla. Calcareous skeletons have been acquired independently in two bryozoan clades - Stenolaemata in the Ordovician and Cheilostomata in the Jurassic - providing an evolutionary replicate. This review aims to highlight the importance of biomineralization in bryozoans and focuses on their skeletal ultrastructures, mineralogy and chemistry, the roles of organic components, the evolutionary history of bimineralization in bryozoans with respect to changes in seawater chemistry, and the impact of contemporary global changes, especially ocean acidification, on bryozoan skeletons. Bryozoan skeletons are constructed from three different wall types (exterior, interior and compound) differing in the presence/absence and location of organic cuticular layers. Skeletal ultrastructures can be classified into wall-parallel (i.e. laminated) and wall-perpendicular (i.e. prismatic) fabrics, the latter apparently found in only one of the two biomineralizing clades (Cheilostomata), which is also the only clade to biomineralize aragonite. A plethora of ultrastructural fabrics can be recognized and most occur in combination with other fabrics to constitute a fabric suite. The proportion of aragonitic and bimineralic bryozoans, as well as the Mg content of bryozoan skeletons, show a latitudinal increase into the warmer waters of the tropics. Responses of bryozoan mineralogy and skeletal thickness to oscillations between calcite and aragonite seas through geological time are equivocal. Field and laboratory studies of living bryozoans have shown that predicted future changes in pH (ocean acidification) combined with global warming are likely to have detrimental effects on calcification, growth rate and production of polymorphic zooids for defence and reproduction, although some species exhibit reasonable levels of resilience. Some key questions about bryozoan biomineralization that need to be addressed are identified.
许多动物门具有生理能力,能够生成具有功能作用的生物矿化骨骼,这些骨骼的形成是经过 5 亿多年的自然选择而塑造的。其中包括苔藓动物门,这是一个多样化程度适中的水生无脊椎动物门,具有丰富的化石记录,并且今天在一些浅海水域生境中作为生物构建者具有重要意义。苔藓动物门的生物矿化模式,尤其是生物矿化过程,了解甚少,但传统上被认为与相关的有钩动物门(腕足动物门和软体动物门)相似。然而,苔藓动物门的骨骼比这两个门的骨骼更为复杂。钙质骨骼已经在苔藓动物门的两个分支中独立获得 - 奥陶纪的 Stenolaemata 和侏罗纪的 Cheilostomata - 提供了进化的重复。本综述旨在强调苔藓动物门生物矿化的重要性,并侧重于它们的骨骼超微结构、矿物学和化学、有机成分的作用、苔藓动物门双矿化的进化历史以及与海水化学变化相关的变化、以及当代全球变化(特别是海洋酸化)对苔藓动物骨骼的影响。苔藓动物门的骨骼由三种不同的壁类型(外部、内部和复合)构成,这些壁类型在有机角质层的存在/不存在和位置上有所不同。骨骼超微结构可分为壁平行(即层状)和壁垂直(即棱柱状)结构,后者显然仅存在于两个生物矿化分支之一(Cheilostomata)中,这也是唯一生物矿化文石的分支。可以识别出大量的超微结构织物,并且大多数与其他织物结合构成织物套件。苔藓动物门中文石和双矿化苔藓动物的比例,以及苔藓动物骨骼的镁含量,随着热带地区水温的升高而呈纬度增加。通过地质时间,苔藓动物门的矿物学和骨骼厚度对碳酸钙和文石海之间的振荡的响应是不确定的。对活苔藓动物的野外和实验室研究表明,预测未来 pH 值(海洋酸化)的变化与全球变暖相结合,可能对钙化、生长速度以及防御和繁殖所需的多态生殖体的产生产生不利影响,尽管有些物种表现出相当水平的弹性。确定了需要解决的有关苔藓动物生物矿化的一些关键问题。