Suppr超能文献

基因表达排序与共表达网络分析的结合提高了新型拟南芥非生物胁迫基因大规模突变体筛选的发现率。

A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

机构信息

French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.

出版信息

Plant Biotechnol J. 2015 May;13(4):501-13. doi: 10.1111/pbi.12274. Epub 2014 Nov 5.

Abstract

As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.

摘要

随着粮食安全挑战的增加,对提高作物产量的主导基因的需求也在增长。然而,植物突变体的遗传筛选通常只能产生非常低频率的所需表型。在这里,我们提出了一种强大的计算方法,用于选择用于筛选插入突变体的候选基因。我们根据拟南芥调节基因在多种非生物胁迫下的表达情况(多重胁迫 [MST] 评分)对其进行排序,同时结合胁迫响应的 RNA 共表达网络分析,选择候选的多重胁迫调节(MSTR)基因。对 62 个 T-DNA 插入突变体进行筛选,这些突变体在候选 MSTR 基因中缺失,以获得非生物胁迫萌发表型,其命中率高达 62%;这种基因发现率比其他大规模插入突变体筛选高 48 倍。此外,这些基因的 MST 评分可用于对其进行筛选。为了评估共表达分析的贡献,我们筛选了另外 64 个 MST 评分基因的突变体,这些基因不在 RNA 共表达网络中。这些 MST 评分基因的筛选发现率为 36%,虽然高于经典突变体筛选,但不如从共表达网络中挑选候选基因时高。我们创建的 MSTR 共表达网络,AraSTressRegNet,可在 http://netbio.bgu.ac.il/arnet 上获得。这种基于系统生物学的筛选方法,结合基因排序和网络分析,可广泛应用于增强对植物和其他生物中调节其他过程的基因的识别,只要有合适的转录组数据即可。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验