Bi Shuangyu, Lai Luhua
Center for Quantitative Biology, Peking University, Beijing, 100871, China.
Cell Mol Life Sci. 2015 Feb;72(4):691-708. doi: 10.1007/s00018-014-1770-5. Epub 2014 Nov 6.
Bacteria use chemotaxis signaling pathways to sense environmental changes. Escherichia coli chemotaxis system represents an ideal model that illustrates fundamental principles of biological signaling processes. Chemoreceptors are crucial signaling proteins that mediate taxis toward a wide range of chemoeffectors. Recently, in deep study of the biochemical and structural features of chemoreceptors, the organization of higher-order clusters in native cells, and the signal transduction mechanisms related to the on-off signal output provides us with general insights to understand how chemotaxis performs high sensitivity, precise adaptation, signal amplification, and wide dynamic range. Along with the increasing knowledge, bacterial chemoreceptors can be engineered to sense novel chemoeffectors, which has extensive applications in therapeutics and industry. Here we mainly review recent advances in the E. coli chemotaxis system involving structure and organization of chemoreceptors, discovery, design, and characterization of chemoeffectors, and signal recognition and transduction mechanisms. Possible strategies for changing the specificity of bacterial chemoreceptors to sense novel chemoeffectors are also discussed.
细菌利用趋化信号通路来感知环境变化。大肠杆菌趋化系统是一个理想的模型,它阐释了生物信号传导过程的基本原理。化学感受器是关键的信号蛋白,介导对多种化学效应物的趋化作用。最近,在对化学感受器的生化和结构特征、天然细胞中高阶簇的组织以及与开-关信号输出相关的信号转导机制的深入研究中,为我们理解趋化作用如何实现高灵敏度、精确适应、信号放大和宽动态范围提供了总体见解。随着知识的不断增加,细菌化学感受器可被设计用于感知新型化学效应物,这在治疗学和工业中有广泛应用。在此,我们主要综述大肠杆菌趋化系统的最新进展,包括化学感受器的结构和组织、化学效应物的发现、设计和表征,以及信号识别和转导机制。还讨论了改变细菌化学感受器特异性以感知新型化学效应物的可能策略。