Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9390-5. doi: 10.1073/pnas.1104824108. Epub 2011 May 23.
Bacterial chemoreceptors, histidine kinase CheA, and coupling protein CheW form clusters of chemotaxis signaling complexes. In signaling complexes kinase activity is enhanced several hundredfold and placed under receptor control. Activation is necessary to poise enzyme activity such that receptor control has physiologically relevant effects. Thus kinase activation can be considered the underlying core activity of signaling complexes. We defined the minimal physical unit that generates this activity using chemoreceptor Tar from Escherichia coli rendered water soluble by insertion into nanodiscs to (i) measure saturable binding of CheA and CheW to the smallest kinase-activating groups of receptor dimers and (ii) purify and characterize core units of signaling complexes. Purified complexes activated kinase almost as well as signaling complexes formed on arrays of receptors in isolated native membrane. Purified complexes contained two receptor trimers of dimers and two CheW for each CheA dimer, consistent with the approximately 1:1 CheACheW ratio determined by binding measurements. The 2:2:1 stoichiometry implied that CheA dimers, the enzymatically active form, connect two chemoreceptor trimers of dimers by interaction of one CheA protomer and a CheW with each trimer, an organization for which specific molecular interactions have previously been identified. The core unit associates six receptor dimers with a CheA dimer, providing sufficient capacity to account for much of the cooperativity and interdimer influence observed experimentally. We conclude that the 221 organization is the core structural and functional unit of chemotaxis signaling complexes and postulate that hexagonal arrays characteristic of signaling complexes are built from this unit.
细菌化学感受器、组氨酸激酶 CheA 和偶联蛋白 CheW 形成趋化信号复合物簇。在信号复合物中,激酶活性增强数百倍,并受到受体的控制。激活是必需的,以使酶活性处于平衡状态,从而使受体控制产生具有生理相关性的效果。因此,激酶激活可以被认为是信号复合物的基本核心活性。我们使用插入纳米盘的大肠杆菌趋化受体 Tar 来定义产生这种活性的最小物理单位,以 (i) 测量 CheA 和 CheW 对受体二聚体的最小激酶激活基团的可饱和结合,以及 (ii) 纯化和表征信号复合物的核心单位。纯化的复合物几乎可以像在分离的天然膜中受体阵列上形成的信号复合物一样有效地激活激酶。纯化的复合物含有两个受体三聚体的二聚体和每个 CheA 二聚体的两个 CheW,与结合测量确定的约 1:1 CheACheW 比值一致。2:2:1 的计量关系意味着 CheA 二聚体,即具有酶活性的形式,通过一个 CheA 原聚体和一个 CheW 与每个三聚体的相互作用,连接两个趋化受体三聚体的二聚体,这种组织先前已经确定了特定的分子相互作用。核心单位将六个受体二聚体与一个 CheA 二聚体结合在一起,提供了足够的容量来解释实验中观察到的大部分协同作用和二聚体之间的影响。我们得出结论,221 组织是趋化信号复合物的核心结构和功能单位,并假设信号复合物特有的六边形阵列是由这个单位构建的。