Borrok M Jack, Kolonko Erin M, Kiessling Laura L
Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.
ACS Chem Biol. 2008 Feb 15;3(2):101-9. doi: 10.1021/cb700211s.
The signal transduction cascade responsible for bacterial chemotaxis serves as a model for understanding how cells perceive and respond to their environments. Bacteria react to chemotactic signals by migrating toward attractants and away from repellents. Recent data suggest that the amplification of attractant stimuli depends on receptor collaboration: occupied and unoccupied chemoreceptors act together to relay attractant signals. Attractant signal transmission, therefore, depends on the organization of the chemoreceptors into a lattice of signaling proteins. The importance of this lattice for transducing repellent signals was unexplored. Here, we investigate the role of inter-receptor communication on repellent responses in Escherichia coli. Previously, we found that multivalent displays of attractants are more potent than their monovalent counterparts. To examine the importance of the chemoreceptor lattice in repellent signaling, we synthesized ligands displaying multiple copies of the repellent leucine. Monomeric leucine and low-valency leucine-displaying polymers were sensed as repellents. In contrast, multivalent displays of leucine capable of binding multiple chemoreceptors function not as potent repellents but as attractants. Intriguingly, chemical cross-linking studies indicate that these multivalent ligands, like monovalent attractants, disrupt the cellular chemoreceptor lattice. Thus, repellents stabilize the intrinsic chemoreceptor lattice, and attractants destabilize it. These results indicate that signals can be transmitted with high sensitivity via the disruption of protein-protein interactions. Moreover, our data demonstrate that repellents can be transformed into attractants merely by their multivalent display. These results have implications for designing agonists and antagonists for other signaling systems.
负责细菌趋化作用的信号转导级联反应是理解细胞如何感知和响应其环境的一个模型。细菌通过向引诱剂迁移并远离驱避剂来对趋化信号作出反应。最近的数据表明,引诱剂刺激的放大依赖于受体协作:被占据和未被占据的化学感受器共同作用以传递引诱剂信号。因此,引诱剂信号的传递取决于化学感受器组织成信号蛋白晶格的方式。这种晶格在传递驱避剂信号方面的重要性尚未得到探索。在这里,我们研究了受体间通讯对大肠杆菌中驱避反应的作用。此前,我们发现引诱剂的多价展示比其单价对应物更有效。为了研究化学感受器晶格在驱避信号传导中的重要性,我们合成了展示多个驱避剂亮氨酸拷贝的配体。单体亮氨酸和低价展示亮氨酸的聚合物被感知为驱避剂。相比之下,能够结合多个化学感受器的亮氨酸多价展示物并非作为有效的驱避剂起作用,而是作为引诱剂。有趣的是,化学交联研究表明,这些多价配体与单价引诱剂一样,会破坏细胞化学感受器晶格。因此,驱避剂会稳定内在的化学感受器晶格,而引诱剂则会使其不稳定。这些结果表明,信号可以通过破坏蛋白质 - 蛋白质相互作用以高灵敏度进行传递。此外,我们的数据表明,仅仅通过多价展示,驱避剂就可以转化为引诱剂。这些结果对设计其他信号系统的激动剂和拮抗剂具有启示意义。