Suppr超能文献

相似文献

2
Downregulation of miR-133a-3p promotes prostate cancer bone metastasis via activating PI3K/AKT signaling.
J Exp Clin Cancer Res. 2018 Jul 18;37(1):160. doi: 10.1186/s13046-018-0813-4.
3
Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis.
Clin Cancer Res. 2011 Aug 15;17(16):5287-98. doi: 10.1158/1078-0432.CCR-10-2619. Epub 2010 Dec 15.
4
Molecular insights into prostate cancer progression: the missing link of tumor microenvironment.
J Urol. 2005 Jan;173(1):10-20. doi: 10.1097/01.ju.0000141582.15218.10.
5
Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment.
Cancers (Basel). 2021 Sep 6;13(17):4492. doi: 10.3390/cancers13174492.
6
Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone.
J Cancer Res Clin Oncol. 2019 Aug;145(8):1999-2012. doi: 10.1007/s00432-019-02950-y. Epub 2019 Jun 6.
7
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.
Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7.
8
Sulfiredoxin as a Potential Therapeutic Target for Advanced and Metastatic Prostate Cancer.
Oxid Med Cell Longev. 2020 Jan 20;2020:2148562. doi: 10.1155/2020/2148562. eCollection 2020.
9
Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells.
Theranostics. 2021 Jun 11;11(16):7640-7657. doi: 10.7150/thno.61178. eCollection 2021.

引用本文的文献

1
Dysregulated microRNAs in prostate cancer: prediction and validation.
Iran J Basic Med Sci. 2024;27(5):611-620. doi: 10.22038/IJBMS.2024.75164.16299.
3
MDA-9/Syntenin in the tumor and microenvironment defines prostate cancer bone metastasis.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2307094120. doi: 10.1073/pnas.2307094120. Epub 2023 Nov 3.
4
Integrated high-throughput analysis identifies super enhancers in metastatic castration-resistant prostate cancer.
Front Pharmacol. 2023 May 24;14:1191129. doi: 10.3389/fphar.2023.1191129. eCollection 2023.
5
Oncolytic Adenovirus, a New Treatment Strategy for Prostate Cancer.
Biomedicines. 2022 Dec 15;10(12):3262. doi: 10.3390/biomedicines10123262.
8
MYC and the unfolded protein response in cancer: synthetic lethal partners in crime?
EMBO Mol Med. 2020 May 8;12(5):e11845. doi: 10.15252/emmm.201911845. Epub 2020 Apr 20.
9
Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play.
Cancers (Basel). 2019 Sep 20;11(10):1405. doi: 10.3390/cancers11101405.
10
Prostate cancer: unmet clinical needs and RAD9 as a candidate biomarker for patient management.
Transl Cancer Res. 2018 Jul;7(Suppl 6):S651-S661. doi: 10.21037/tcr.2018.01.21. Epub 2018 Jan 14.

本文引用的文献

1
Targeted inhibition of cell-surface serine protease Hepsin blocks prostate cancer bone metastasis.
Oncotarget. 2014 Mar 15;5(5):1352-62. doi: 10.18632/oncotarget.1817.
2
RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization.
Endocr Relat Cancer. 2014 Mar 4;21(2):311-26. doi: 10.1530/ERC-13-0548. Print 2014 Apr.
4
The role of murine models of prostate cancer in drug target discovery and validation.
Expert Opin Drug Discov. 2009 Aug;4(8):879-88. doi: 10.1517/17460440903049308.
5
Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial.
J Clin Oncol. 2013 Feb 1;31(4):412-9. doi: 10.1200/JCO.2012.45.0494. Epub 2012 Nov 19.
6
Modeling prostate cancer in mice: something old, something new, something premalignant, something metastatic.
Cancer Metastasis Rev. 2013 Jun;32(1-2):109-22. doi: 10.1007/s10555-012-9409-1.
8
Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab.
Nat Rev Drug Discov. 2012 May;11(5):401-19. doi: 10.1038/nrd3705.
9
The functions and regulation of the PTEN tumour suppressor.
Nat Rev Mol Cell Biol. 2012 Apr 4;13(5):283-96. doi: 10.1038/nrm3330.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验