Boguñá Marian, Lafuerza Luis F, Toral Raúl, Serrano M Ángeles
Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
Theoretical Physics Division, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042108. doi: 10.1103/PhysRevE.90.042108. Epub 2014 Oct 6.
We present a simple and general framework to simulate statistically correct realizations of a system of non-Markovian discrete stochastic processes. We give the exact analytical solution and a practical and efficient algorithm like the Gillespie algorithm for Markovian processes, with the difference being that now the occurrence rates of the events depend on the time elapsed since the event last took place. We use our non-Markovian generalized Gillespie stochastic simulation methodology to investigate the effects of nonexponential interevent time distributions in the susceptible-infected-susceptible model of epidemic spreading. Strikingly, our results unveil the drastic effects that very subtle differences in the modeling of non-Markovian processes have on the global behavior of complex systems, with important implications for their understanding and prediction. We also assess our generalized Gillespie algorithm on a system of biochemical reactions with time delays. As compared to other existing methods, we find that the generalized Gillespie algorithm is the most general because it can be implemented very easily in cases (such as for delays coupled to the evolution of the system) in which other algorithms do not work or need adapted versions that are less efficient in computational terms.
我们提出了一个简单通用的框架,用于模拟非马尔可夫离散随机过程系统的统计正确实现。我们给出了精确的解析解以及一种类似于马尔可夫过程的 Gillespie 算法的实用高效算法,不同之处在于现在事件的发生率取决于自上一次事件发生以来所经过的时间。我们使用非马尔可夫广义 Gillespie 随机模拟方法来研究流行病传播的易感 - 感染 - 易感模型中事件间时间分布非指数性的影响。令人惊讶的是,我们的结果揭示了非马尔可夫过程建模中非常细微的差异对复杂系统全局行为的巨大影响,这对理解和预测复杂系统具有重要意义。我们还在具有时间延迟的生化反应系统上评估了我们的广义 Gillespie 算法。与其他现有方法相比,我们发现广义 Gillespie 算法最为通用,因为在其他算法无法工作或需要计算效率较低的适配版本的情况(例如与系统演化耦合的延迟情况)下,它可以非常容易地实现。