Suppr超能文献

复杂网络中非马尔可夫SEIS模型与马尔可夫SIS模型之间的地方病状态等价性

Endemic state equivalence between non-Markovian SEIS and Markovian SIS model in complex networks.

作者信息

Tomovski Igor, Basnarkov Lasko, Abazi Alajdin

机构信息

Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov, 2, P.O. Box 428, 1000 Skopje, Macedonia.

Faculty of Computer Science and Engineering, "Ss Cyril and Methodius" University - Skopje, ul.Rudzer Boshkovikj 16, P.O. Box 393, 1000 Skopje, Macedonia.

出版信息

Physica A. 2022 Aug 1;599:127480. doi: 10.1016/j.physa.2022.127480. Epub 2022 Apr 30.

Abstract

In the light of several major epidemic events that emerged in the past two decades, and emphasized by the COVID-19 pandemics, the non-Markovian spreading models occurring on complex networks gained significant attention from the scientific community. Following this interest, in this article, we explore the relations that exist between the mean-field approximated non-Markovian SEIS (Susceptible-Exposed-Infectious-Susceptible) and the classical Markovian SIS, as basic reoccurring virus spreading models in complex networks. We investigate the similarities and seek for equivalences both for the discrete-time and the continuous-time forms. First, we formally introduce the continuous-time non-Markovian SEIS model, and derive the epidemic threshold in a strict mathematical procedure. Then we present the main result of the paper that, providing certain relations between process parameters hold, the stationary-state solutions of the status probabilities in the non-Markovian SEIS may be found from the stationary state probabilities of the Markovian SIS model. This result has a two-fold significance. First, it simplifies the computational complexity of the non-Markovian model in practical applications, where only the stationary distributions of the state probabilities are required. Next, it defines the epidemic threshold of the non-Markovian SEIS model, without the necessity of a thrall mathematical analysis. We present this result both in analytical form, and confirm the result through numerical simulations. Furthermore, as of secondary importance, in an analytical procedure we show that each Markovian SIS may be represented as non-Markovian SEIS model.

摘要

鉴于过去二十年间出现的几次重大疫情事件,且新冠疫情进一步凸显了其重要性,复杂网络上发生的非马尔可夫传播模型受到了科学界的广泛关注。受此启发,在本文中,我们探讨了平均场近似非马尔可夫SEIS(易感-暴露-感染-易感)模型与经典马尔可夫SIS模型之间的关系,这两种模型是复杂网络中基本的反复出现的病毒传播模型。我们研究了离散时间形式和连续时间形式下的相似性并寻找等价关系。首先,我们正式引入连续时间非马尔可夫SEIS模型,并通过严格的数学程序推导出疫情阈值。然后我们给出本文的主要结果:如果过程参数之间满足一定关系,那么非马尔可夫SEIS模型中状态概率的稳态解可以从马尔可夫SIS模型的稳态概率中得出。这一结果具有双重意义。首先,在实际应用中,当只需要状态概率的稳态分布时,它简化了非马尔可夫模型的计算复杂度。其次,它定义了非马尔可夫SEIS模型的疫情阈值,而无需进行繁琐的数学分析。我们以解析形式给出这一结果,并通过数值模拟对结果进行了验证。此外,作为次要重点,在一个解析过程中我们表明每个马尔可夫SIS模型都可以表示为非马尔可夫SEIS模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc01/9055791/f9da4adc729f/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验