Suppr超能文献

噪声、瞬态动力学以及方波爆发神经元中逼真的峰间间隔变化的产生

Noise, transient dynamics, and the generation of realistic interspike interval variation in square-wave burster neurons.

作者信息

Marin Bóris, Pinto Reynaldo Daniel, Elson Robert C, Colli Eduardo

机构信息

Instituto de Física, Universidade de São Paulo, Brazil.

Instituto de Física de São Carlos, Universidade de São Paulo, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042718. doi: 10.1103/PhysRevE.90.042718. Epub 2014 Oct 20.

Abstract

First return maps of interspike intervals for biological neurons that generate repetitive bursts of impulses can display stereotyped structures (neuronal signatures). Such structures have been linked to the possibility of multicoding and multifunctionality in neural networks that produce and control rhythmical motor patterns. In some cases, isolating the neurons from their synaptic network reveals irregular, complex signatures that have been regarded as evidence of intrinsic, chaotic behavior. We show that incorporation of dynamical noise into minimal neuron models of square-wave bursting (either conductance-based or abstract) produces signatures akin to those observed in biological examples, without the need for fine tuning of parameters or ad hoc constructions for inducing chaotic activity. The form of the stochastic term is not strongly constrained and can approximate several possible sources of noise, e.g., random channel gating or synaptic bombardment. The cornerstone of this signature generation mechanism is the rich, transient, but deterministic dynamics inherent in the square-wave (saddle-node and homoclinic) mode of neuronal bursting. We show that noise causes the dynamics to populate a complex transient scaffolding or skeleton in state space, even for models that (without added noise) generate only periodic activity (whether in bursting or tonic spiking mode).

摘要

产生重复性脉冲爆发的生物神经元的峰峰间隔首次返回映射可以显示出刻板结构(神经元特征)。这种结构与产生和控制节律性运动模式的神经网络中的多编码和多功能性的可能性有关。在某些情况下,将神经元与其突触网络分离会揭示出不规则、复杂的特征,这些特征被视为内在混沌行为的证据。我们表明,将动态噪声纳入方波爆发的最小神经元模型(基于电导的或抽象的)会产生类似于在生物学实例中观察到的特征,而无需对参数进行微调或为诱导混沌活动进行特殊构造。随机项的形式没有受到严格限制,可以近似几种可能的噪声源,例如随机通道门控或突触轰击。这种特征生成机制的基石是神经元爆发的方波(鞍结和同宿)模式中固有的丰富、瞬态但确定性的动力学。我们表明,即使对于(不添加噪声时)仅产生周期性活动(无论是爆发模式还是紧张性放电模式)的模型,噪声也会使动力学在状态空间中填充一个复杂的瞬态支架或骨架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验