Suppr超能文献

基于不平衡临床数据预测急性心脏并发症的风险评分

Risk scoring for prediction of acute cardiac complications from imbalanced clinical data.

作者信息

Liu Nan, Koh Zhi Xiong, Chua Eric Chern-Pin, Tan Licia Mei-Ling, Lin Zhiping, Mirza Bilal, Ong Marcus Eng Hock

出版信息

IEEE J Biomed Health Inform. 2014 Nov;18(6):1894-902. doi: 10.1109/JBHI.2014.2303481.

Abstract

Fast and accurate risk stratification is essential in the emergency department (ED) as it allows clinicians to identify chest pain patients who are at high risk of cardiac complications and require intensive monitoring and early intervention. In this paper, we present a novel intelligent scoring system using heart rate variability, 12-lead electrocardiogram (ECG), and vital signs where a hybrid sampling-based ensemble learning strategy is proposed to handle data imbalance. The experiments were conducted on a dataset consisting of 564 chest pain patients recruited at the ED of a tertiary hospital. The proposed ensemble-based scoring system was compared with established scoring methods such as the modified early warning score and the thrombolysis in myocardial infarction score, and showed its effectiveness in predicting acute cardiac complications within 72 h in terms of the receiver operation characteristic analysis.

摘要

在急诊科,快速准确的风险分层至关重要,因为它能让临床医生识别出有心脏并发症高风险且需要密切监测和早期干预的胸痛患者。在本文中,我们提出了一种新颖的智能评分系统,该系统利用心率变异性、12导联心电图(ECG)和生命体征,并提出了一种基于混合采样的集成学习策略来处理数据不平衡问题。实验是在一个由一家三级医院急诊科招募的564例胸痛患者组成的数据集上进行的。将所提出的基于集成的评分系统与改良早期预警评分和心肌梗死溶栓评分等既定评分方法进行了比较,并通过接受者操作特征分析表明其在预测72小时内急性心脏并发症方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验