Suppr超能文献

开发和验证一种实用的机器学习分诊算法,用于检测急诊科需要重症监护的患者。

Development and validation of a practical machine-learning triage algorithm for the detection of patients in need of critical care in the emergency department.

机构信息

Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

Department of Electronic Engineering, Tsinghua University, Beijing, China.

出版信息

Sci Rep. 2021 Dec 15;11(1):24044. doi: 10.1038/s41598-021-03104-2.

Abstract

Identifying critically ill patients is a key challenge in emergency department (ED) triage. Mis-triage errors are still widespread in triage systems around the world. Here, we present a machine learning system (MLS) to assist ED triage officers better recognize critically ill patients and provide a text-based explanation of the MLS recommendation. To derive the MLS, an existing dataset of 22,272 patient encounters from 2012 to 2019 from our institution's electronic emergency triage system (EETS) was used for algorithm training and validation. The area under the receiver operating characteristic curve (AUC) was 0.875 ± 0.006 (CI:95%) in retrospective dataset using fivefold cross validation, higher than that of reference model (0.843 ± 0.005 (CI:95%)). In the prospective cohort study, compared to the traditional triage system's 1.2% mis-triage rate, the mis-triage rate in the MLS-assisted group was 0.9%. This MLS method with a real-time explanation for triage officers was able to lower the mis-triage rate of critically ill ED patients.

摘要

在急诊科分诊中,识别危重症患者是一项关键挑战。在世界各地的分诊系统中,仍存在广泛的分诊错误。在这里,我们提出了一种机器学习系统 (MLS),以帮助急诊科分诊人员更好地识别危重症患者,并提供 MLS 推荐的基于文本的解释。为了推导 MLS,我们使用了来自我们机构的电子急诊分诊系统 (EETS) 的 2012 年至 2019 年期间的 22272 名患者就诊的现有数据集,用于算法训练和验证。在使用五重交叉验证的回顾性数据集,受试者工作特征曲线下面积 (AUC) 为 0.875±0.006 (CI:95%),高于参考模型 (0.843±0.005 (CI:95%))。在前瞻性队列研究中,与传统分诊系统 1.2%的分诊错误率相比,MLS 辅助组的分诊错误率为 0.9%。这种具有实时解释功能的 MLS 方法能够降低急诊科危重症患者的分诊错误率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2c/8674324/8d92c91a3803/41598_2021_3104_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验