Suppr超能文献

基于 FPGA 的高帧率电阻抗断层成像电压电流双驱动系统。

FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.

出版信息

IEEE Trans Med Imaging. 2015 Apr;34(4):888-901. doi: 10.1109/TMI.2014.2367315. Epub 2014 Nov 5.

Abstract

Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data.

摘要

电阻抗断层成像(EIT)用于对受试组织的电特性分布进行成像。EIT 系统包括复杂的硬件和软件模块,这些模块通常是针对特定应用而设计的。升级这些模块是一个耗时的过程,需要进行严格的测试,以确保新模块与现有模块的正常运行。为此,我们使用 National Instruments(NI)的硬件和软件模块开发了一种模块化和可重构的数据采集(DAQ)系统,这些模块在硬件和软件版本的代际之间具有固有兼容性。该系统可以配置为使用多达 32 个通道。该 EIT 系统可用于互换施加电流或电压信号,并以半并行方式测量组织响应。在 FPGA 上实现了一种新颖的信号平均算法和 512 点快速傅里叶变换(FFT)计算块。FFT 输出箱被分类为信号或噪声。信号箱构成组织对纯音或混合音信号的响应。信号箱的数据可用于传统应用,以及同步频差成像。噪声箱用于在 FPGA 上计算噪声功率。噪声功率表示信号质量的指标,可用于确保组织-电极接触良好。将这些计算密集型任务分配给 FPGA 可以减少高帧率 EIT 中 PC 与 FPGA 之间所需的带宽。在 16 通道配置中,信号平均因子为 8,在 100 kHz 时的 DAQ 帧率超过 110 帧/s(-1),整个频谱的信噪比超过 90 dB。在 1 MHz 以下的频率范围内,发现了互易误差。在充满盐水的水箱中放置高导电性夹杂物进行静态成像实验;在绝对电流和电压模式数据的重建中,夹杂物都被清晰地定位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验