Oh Tong In, Woo Eung Je, Holder David
College of Electronics and Information, Kyung Hee University, Korea.
Physiol Meas. 2007 Jul;28(7):S183-96. doi: 10.1088/0967-3334/28/7/S14. Epub 2007 Jun 26.
We describe the development of a multi-frequency electrical impedance tomography (EIT) system (KHU Mark1) with a single balanced current source and multiple voltmeters. It was primarily designed for imaging brain function with a flexible strategy for addressing electrodes and a frequency range from 10 Hz-500 kHz. The maximal number of voltmeters is 64, and all of them can simultaneously acquire and demodulate voltage signals. Each voltmeter measures a differential voltage between a pair of electrodes. All voltmeters are configured in a radially symmetric architecture in order to optimize the routing of wires and minimize cross-talk. We adopted several techniques from existing EIT systems including digital waveform generation, a Howland current generator with a generalized impedance converter (GIC), digital phase-sensitive demodulation and tri-axial cables. New features of the KHU Mark1 system include multiple GIC circuits to maximize the output impedance of the current source at multiple frequencies. The voltmeter employs contact impedance measurements, data overflow detection, spike noise rejection, automatic gain control and programmable data averaging. The KHU Mark1 system measures both in-phase and quadrature components of trans-impedances. By using a script file describing an operating mode, the system setup can be easily changed. The performance of the developed multi-frequency EIT system was evaluated in terms of a common-mode rejection ratio, signal-to-noise ratio, linearity error and reciprocity error. Time-difference and frequency-difference images of a saline phantom with a banana object are presented showing a frequency-dependent complex conductivity of the banana. Future design of a more innovative system is suggested including miniaturization and wireless techniques.
我们描述了一种具有单个平衡电流源和多个电压表的多频电阻抗断层成像(EIT)系统(KHU Mark1)的开发情况。它主要设计用于通过灵活的电极寻址策略和10 Hz - 500 kHz的频率范围对脑功能进行成像。电压表的最大数量为64个,并且所有电压表都可以同时采集和解调电压信号。每个电压表测量一对电极之间的差分电压。所有电压表采用径向对称架构配置,以优化布线并最小化串扰。我们采用了现有EIT系统的多种技术,包括数字波形生成、带有广义阻抗转换器(GIC)的霍兰德电流发生器、数字相敏解调以及三轴电缆。KHU Mark1系统的新特性包括多个GIC电路,以在多个频率下最大化电流源的输出阻抗。电压表采用接触阻抗测量、数据溢出检测、尖峰噪声抑制、自动增益控制和可编程数据平均。KHU Mark1系统测量跨阻抗的同相和正交分量。通过使用描述操作模式的脚本文件,可以轻松更改系统设置。从共模抑制比、信噪比、线性误差和互易误差方面评估了所开发的多频EIT系统的性能。给出了带有香蕉物体的盐水体模的时间差和频率差图像,显示了香蕉的频率相关复电导率。建议了更具创新性系统的未来设计,包括小型化和无线技术。