Cellular Dynamics Section, Hormel Institute, University of Minnesota, Austin, MN, USA.
Int Rev Cell Mol Biol. 2014;313:179-217. doi: 10.1016/B978-0-12-800177-6.00006-2.
The assembly of a bipolar spindle lies at the heart of mitotic chromosome segregation. In animal somatic cells, the process of spindle assembly involves multiple complex interactions between various cellular compartments, including an emerging antiparallel microtubule network, microtubule-associated motor proteins and spindle assembly factors, the cell's cortex, and the chromosomes themselves. The result is a dynamic structure capable of aligning pairs of sister chromatids, sensing chromosome misalignment, and generating force to segregate the replicated genome into two daughters. Because the centrosome lies at the center of the array of microtubule minus-ends, and the essential one-to-two duplication of the centrosome prior to mitosis is linked to cell cycle progression, this organelle has long been implicated as a device to generate spindle bipolarity. However, this classic model for spindle assembly is challenged by observations and experimental manipulations demonstrating that acentrosomal cells can and do form bipolar spindles, both mitotic and meiotic. Indeed, recent comprehensive proteomic analysis of centrosome-dependent versus independent mitotic spindle assembly mechanisms reveals a large, common set of genes required for both processes, with very few genes needed to differentiate between the two. While these studies cast doubt on an absolute role for the centrosome in establishing spindle polarity, it is clear that having too few or too many centrosomes results in abnormal chromosome segregation and aneuploidy. Here we review the case both for and against the role of the centrioles and centrosomes in ensuring proper assembly of a bipolar spindle, an essential element in the maintenance of genomic stability.
双极纺锤体的组装是有丝分裂染色体分离的核心。在动物体细胞中,纺锤体组装的过程涉及到各种细胞区室之间的多个复杂相互作用,包括新兴的平行微管网络、微管相关的马达蛋白和纺锤体组装因子、细胞皮质和染色体本身。其结果是形成一个能够使姐妹染色单体对齐的动态结构,感知染色体错位,并产生力将复制的基因组分离到两个子细胞中。由于中心体位于微管负端阵列的中心,并且中心体在有丝分裂前必需的一到两次复制与细胞周期进程相关,因此这个细胞器长期以来一直被认为是产生纺锤体双极性的装置。然而,这种经典的纺锤体组装模型受到了挑战,因为观察和实验操作表明,无中心体的细胞可以并且确实形成了双极纺锤体,无论是有丝分裂还是减数分裂。事实上,最近对中心体依赖性和非依赖性有丝分裂纺锤体组装机制的全面蛋白质组学分析揭示了这两个过程都需要的大量共同基因,而区分这两个过程所需的基因很少。虽然这些研究对中心体在建立纺锤体极性中的绝对作用提出了质疑,但很明显,中心体太少或太多都会导致染色体分离异常和非整倍体。在这里,我们回顾了中心体和中心粒在确保双极纺锤体正确组装中的作用的正反两方面的情况,这是维持基因组稳定性的一个重要因素。