Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA.
Science. 2014 Nov 7;346(6210):739-41. doi: 10.1126/science.1258211.
Mass-independent fractionation of sulfur isotopes (reported as Δ(33)S) recorded in Archean sedimentary rocks helps to constrain the composition of Earth's early atmosphere and the timing of the rise of oxygen ~2.4 billion years ago. Although current hypotheses predict uniformly negative Δ(33)S for Archean seawater sulfate, this remains untested through the vast majority of Archean time. We applied x-ray absorption spectroscopy to investigate the low sulfate content of particularly well-preserved Neoarchean carbonates and mass spectrometry to measure their Δ(33)S signatures. We report unexpected, large, widespread positive Δ(33)S values from stratigraphic sections capturing over 70 million years and diverse depositional environments. Combined with the pyrite record, these results show that sulfate does not carry the expected negative Δ(33)S from sulfur mass-independent fractionation in the Neoarchean atmosphere.
太古宙沉积岩中记录的硫同位素分馏(以 Δ(33)S 表示)有助于约束地球早期大气的组成以及 24 亿年前氧气含量上升的时间。尽管目前的假说预测太古宙海水硫酸盐的 Δ(33)S 为均匀负值,但这在绝大多数太古宙时间里仍未得到验证。我们应用 X 射线吸收光谱技术研究了保存特别完好的新元古代碳酸盐中低硫酸盐含量,并通过质谱法测量了它们的 Δ(33)S 特征。我们报告了在跨越 7000 多万年和多种沉积环境的地层剖面中,出现了出乎意料的、广泛的、大范围的正 Δ(33)S 值。这些结果与黄铁矿记录相结合,表明硫酸盐在新元古代大气中不会通过硫同位素质量独立分馏产生预期的负 Δ(33)S。