Meyer N R, Zerkle A L, Fike D A
School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK.
Department of Earth and Planetary Sciences, Washington University, St. Louis, MO, USA.
Geobiology. 2017 May;15(3):353-365. doi: 10.1111/gbi.12227. Epub 2017 Jan 27.
Multiple sulphur (S) isotope ratios are powerful proxies to understand the complexity of S biogeochemical cycling through Deep Time. The disappearance of a sulphur mass-independent fractionation (S-MIF) signal in rocks <~2.4 Ga has been used to date a dramatic rise in atmospheric oxygen levels. However, intricacies of the S-cycle before the Great Oxidation Event remain poorly understood. For example, the isotope composition of coeval atmospherically derived sulphur species is still debated. Furthermore, variation in Archaean pyrite δ S values has been widely attributed to microbial sulphate reduction (MSR). While petrographic evidence for Archaean early-diagenetic pyrite formation is common, textural evidence for the presence and distribution of MSR remains enigmatic. We combined detailed petrographic and in situ, high-resolution multiple S-isotope studies (δ S and Δ S) using secondary ion mass spectrometry (SIMS) to document the S-isotope signatures of exceptionally well-preserved, pyritised microbialites in shales from the ~2.65-Ga Lokammona Formation, Ghaap Group, South Africa. The presence of MSR in this Neoarchaean microbial mat is supported by typical biogenic textures including wavy crinkled laminae, and early-diagenetic pyrite containing <26‰ μm-scale variations in δ S and Δ S = -0.21 ± 0.65‰ (±1σ). These large variations in δ S values suggest Rayleigh distillation of a limited sulphate pool during high rates of MSR. Furthermore, we identified a second, morphologically distinct pyrite phase that precipitated after lithification, with δ S = 8.36 ± 1.16‰ and Δ S = 5.54 ± 1.53‰ (±1σ). We propose that the S-MIF signature of this secondary pyrite does not reflect contemporaneous atmospheric processes at the time of deposition; instead, it formed by the influx of later-stage sulphur-bearing fluids containing an inherited atmospheric S-MIF signal and/or from magnetic isotope effects during thermochemical sulphate reduction. These insights highlight the complementary nature of petrography and SIMS studies to resolve multigenerational pyrite formation pathways in the geological record.
多种硫(S)同位素比值是了解深部地质时期硫生物地球化学循环复杂性的有力指标。岩石中硫质量无关分馏(S-MIF)信号在约24亿年前消失,这一现象被用于确定大气氧含量的急剧上升时间。然而,大氧化事件之前硫循环的复杂性仍知之甚少。例如,同期大气来源硫物种的同位素组成仍存在争议。此外,太古宙黄铁矿δS值的变化被广泛归因于微生物硫酸盐还原(MSR)。虽然太古宙早期成岩黄铁矿形成的岩石学证据很常见,但MSR存在和分布的结构证据仍然不明朗。我们结合了详细的岩石学研究以及使用二次离子质谱(SIMS)进行的原位高分辨率多硫同位素研究(δS和ΔS),以记录南非Ghaap群约26.5亿年前Lokammona组页岩中保存异常完好的黄铁矿化微生物岩的硫同位素特征。这个新太古宙微生物席中MSR的存在得到了典型生物成因结构的支持,包括波浪状褶皱层理,以及早期成岩黄铁矿,其δS和ΔS = -0.21 ± 0.65‰(±1σ)存在<26‰的微米级变化。δS值的这些巨大变化表明在MSR高速率期间有限硫酸盐池的瑞利蒸馏。此外,我们识别出了第二个在成岩作用后沉淀的形态独特的黄铁矿相,其δS = 8.36 ± 1.16‰,ΔS = 5.54 ± 1.53‰(±1σ)。我们认为这种次生黄铁矿的S-MIF特征并不反映沉积时的同期大气过程;相反,它是由含有继承大气S-MIF信号的后期含硫流体的流入和/或热化学硫酸盐还原过程中的磁同位素效应形成的。这些见解突出了岩石学和SIMS研究在解决地质记录中多代黄铁矿形成途径方面的互补性。