Suppr超能文献

基于微环谐振器的光声显微镜超声探测器距离依赖性响应的理论与实验研究。

Theoretical and experimental studies of distance dependent response of micro-ring resonator-based ultrasonic detectors for photoacoustic microscopy.

作者信息

Zhang Zhen, Dong Biqin, Li Hao, Zhou Fan, Zhang Hao F, Sun Cheng

机构信息

Department of Mechanical Engineering, Northwestern University , Evanston, Illinois 60208, USA.

Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, USA.

出版信息

J Appl Phys. 2014 Oct 14;116(14):144501. doi: 10.1063/1.4897455. Epub 2014 Oct 8.

Abstract

We present in this paper a systematic study of the distance dependent detection characteristics of the newly developed micro-ring resonator (MRR)-based ultrasonic detector for photoacoustic microscopy (PAM). A simple analytic model was first developed to study the steady-state response to the continuous ultrasonic waves. While placing the MRR detector at the acoustic far-field provides longer working distance and broader field of view, the detection at acoustic near-field offers the improved sensitivity and broader bandwidth but at the cost of reduction in the field of view. Furthermore, a numerical model was developed to analyze the transient response to the photoacoustic-induced impulsive waves. Notably, far-field detection exhibits a flat wavefront of its response pattern in the time domain while large distortions are clearly visible in the case of near-field detection. Finally, both analytic and numerical models are validated by experimental studies. This work establishes a theoretical framework for quantitatively analyzing the trade-offs between near-field and far-field detection using MRR detector, creating a guideline for optimizing the PAM for various applications in biomedical imaging and diagnostics.

摘要

在本文中,我们对新开发的基于微环谐振器(MRR)的光声显微镜(PAM)超声探测器的距离依赖性检测特性进行了系统研究。首先建立了一个简单的解析模型来研究对连续超声波的稳态响应。虽然将MRR探测器置于声学远场可提供更长的工作距离和更宽的视野,但在声学近场进行检测可提高灵敏度和拓宽带宽,不过代价是视野减小。此外,还建立了一个数值模型来分析对光声诱导脉冲波的瞬态响应。值得注意的是,远场检测在时域中的响应模式呈现出平坦的波前,而近场检测的情况下则明显可见大的失真。最后,通过实验研究对解析模型和数值模型都进行了验证。这项工作建立了一个理论框架,用于定量分析使用MRR探测器在近场和远场检测之间的权衡,为优化用于生物医学成像和诊断中各种应用的PAM创建了指导方针。

相似文献

3
Theoretical and experimental study on the detection limit of the micro-ring resonator based ultrasound point detectors.
Photoacoustics. 2023 Nov 29;34:100574. doi: 10.1016/j.pacs.2023.100574. eCollection 2023 Dec.
6
High acoustic numerical aperture photoacoustic microscopy with improved sensitivity.
Opt Lett. 2020 Feb 1;45(3):628-631. doi: 10.1364/OL.384691.
7
High-Frequency 3D Photoacoustic Computed Tomography Using an Optical Microring Resonator.
BME Front. 2022;2022. doi: 10.34133/2022/9891510. Epub 2022 Aug 1.
8
Photoacoustic imaging reveals hidden underdrawings in paintings.
Sci Rep. 2017 Apr 7;7(1):747. doi: 10.1038/s41598-017-00873-7.
9
Highly sensitive ultrasound detection using nanofabricated polymer micro-ring resonators.
Nano Converg. 2023 Jun 20;10(1):30. doi: 10.1186/s40580-023-00378-2.
10
Photoacoustic tomography with a single detector in a reverberant cavity.
J Acoust Soc Am. 2009 Mar;125(3):1426-36. doi: 10.1121/1.3068445.

引用本文的文献

1
WGM microprobe device for high-sensitivity ultrasound detection and vibration spectrum measurement.
Front Optoelectron. 2025 Aug 14;18(1):17. doi: 10.1007/s12200-025-00161-7.
2
Deep tissue photoacoustic imaging with light and sound.
Npj Imaging. 2024;2(1):44. doi: 10.1038/s44303-024-00048-w. Epub 2024 Nov 6.
3
Ultrasound sensing with optical microcavities.
Light Sci Appl. 2024 Jul 9;13(1):159. doi: 10.1038/s41377-024-01480-8.
4
Highly sensitive ultrasound detection using nanofabricated polymer micro-ring resonators.
Nano Converg. 2023 Jun 20;10(1):30. doi: 10.1186/s40580-023-00378-2.
5
Transparent microfiber Fabry-Perot ultrasound sensor with needle-shaped focus for multiscale photoacoustic imaging.
Photoacoustics. 2023 Mar 27;30:100482. doi: 10.1016/j.pacs.2023.100482. eCollection 2023 Apr.
6
High-Frequency 3D Photoacoustic Computed Tomography Using an Optical Microring Resonator.
BME Front. 2022;2022. doi: 10.34133/2022/9891510. Epub 2022 Aug 1.
7
Photoacoustic Imaging in Biomedicine and Life Sciences.
Life (Basel). 2022 Apr 14;12(4):588. doi: 10.3390/life12040588.
8
Broadband surface plasmon resonance sensor for fast spectroscopic photoacoustic microscopy.
Photoacoustics. 2021 Sep 21;24:100305. doi: 10.1016/j.pacs.2021.100305. eCollection 2021 Dec.
10
Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography.
Nat Commun. 2019 Sep 19;10(1):4277. doi: 10.1038/s41467-019-12178-6.

本文引用的文献

1
Photoacoustic microscopy and computed tomography: from bench to bedside.
Annu Rev Biomed Eng. 2014 Jul 11;16:155-85. doi: 10.1146/annurev-bioeng-071813-104553. Epub 2014 May 28.
3
Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials.
Adv Mater. 2013 Apr 24;25(16):2351-6. doi: 10.1002/adma.201300314. Epub 2013 Mar 1.
4
Self-repairing, interferometric waveguide sensor with a large strain range.
Appl Opt. 2012 Oct 1;51(28):6886-95. doi: 10.1364/AO.51.006886.
5
Non-contact biomedical photoacoustic and ultrasound imaging.
J Biomed Opt. 2012 Jun;17(6):061217. doi: 10.1117/1.JBO.17.6.061217.
6
Reflection-mode submicron-resolution in vivo photoacoustic microscopy.
J Biomed Opt. 2012 Feb;17(2):020501. doi: 10.1117/1.JBO.17.2.020501.
7
Photoacoustic tomography: in vivo imaging from organelles to organs.
Science. 2012 Mar 23;335(6075):1458-62. doi: 10.1126/science.1216210.
8
Label-free bond-selective imaging by listening to vibrationally excited molecules.
Phys Rev Lett. 2011 Jun 10;106(23):238106. doi: 10.1103/PhysRevLett.106.238106.
10
Broadband optical ultrasound sensor with a unique open-cavity structure.
J Biomed Opt. 2011 Jan-Feb;16(1):017001. doi: 10.1117/1.3528014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验