Roh Min K, Eckhoff Philip
Numerical Methods, Institute for Disease Modeling, 1575 132 Ave. NE, Bellevue, 98005, USA.
BMC Syst Biol. 2014 Nov 8;8:126. doi: 10.1186/s12918-014-0126-y.
With recent increase in affordability and accessibility of high-performance computing (HPC), the use of large stochastic models has become increasingly popular for its ability to accurately mimic the behavior of the represented biochemical system. One important application of such models is to predict parameter configurations that yield an event of scientific significance. Due to the high computational requirements of Monte Carlo simulations and dimensionality of parameter space, brute force search is computationally infeasible for most large models.
We have developed a novel parameter estimation algorithm-Stochastic Parameter Search for Events (SParSE)-that automatically computes parameter configurations for propagating the system to produce an event of interest at a user-specified success rate and error tolerance. Our method is highly automated and parallelizable. In addition, computational complexity does not scale linearly with the number of unknown parameters; all reaction rate parameters are updated concurrently at the end of each iteration in SParSE. We apply SParSE to three systems of increasing complexity: birth-death, reversible isomerization, and Susceptible-Infectious-Recovered-Susceptible (SIRS) disease transmission. Our results demonstrate that SParSE substantially accelerates computation of the parametric solution hyperplane compared to uniform random search. We also show that the novel heuristic for handling over-perturbing parameter sets enables SParSE to compute biasing parameters for a class of rare events that is not amenable to current algorithms that are based on importance sampling.
SParSE provides a novel, efficient, event-oriented parameter estimation method for computing parametric configurations that can be readily applied to any stochastic systems obeying chemical master equation (CME). Its usability and utility do not diminish with large systems as the algorithmic complexity for a given system is independent of the number of unknown reaction rate parameters.
随着高性能计算(HPC)的可承受性和可及性最近有所提高,大型随机模型因其能够准确模拟所代表的生化系统的行为而越来越受欢迎。此类模型的一个重要应用是预测产生具有科学意义事件的参数配置。由于蒙特卡罗模拟的高计算要求和参数空间的维度,对于大多数大型模型而言,暴力搜索在计算上是不可行的。
我们开发了一种新颖的参数估计算法——事件随机参数搜索(SParSE),它能自动计算参数配置,以便将系统传播到以用户指定的成功率和误差容限产生感兴趣的事件。我们的方法高度自动化且可并行化。此外,计算复杂度不会随未知参数的数量线性增加;在SParSE的每次迭代结束时,所有反应速率参数会同时更新。我们将SParSE应用于三个复杂度不断增加的系统:生死模型、可逆异构化模型以及易感-感染-康复-易感(SIRS)疾病传播模型。我们的结果表明,与均匀随机搜索相比,SParSE显著加速了参数解超平面的计算。我们还表明,用于处理过度扰动参数集的新颖启发式方法使SParSE能够计算一类罕见事件的偏差参数,而这类事件对于当前基于重要性采样的算法来说是难以处理的。
SParSE提供了一种新颖、高效、面向事件的参数估计方法,用于计算参数配置,该方法可轻松应用于任何服从化学主方程(CME)的随机系统。由于给定系统的算法复杂度与未知反应速率参数的数量无关,因此其可用性和实用性不会因系统规模大而降低。