Suppr超能文献

SParSE++:改进的基于事件的随机参数搜索

SParSE++: improved event-based stochastic parameter search.

作者信息

Roh Min K, Daigle Bernie J

机构信息

Applied Mathematics, Institute for Disease Modeling, 3150 139th Ave SE, Bellevue, 98005, WA, USA.

Departments of Biological Sciences and Computer Science, The University of Memphis, 3744 Walker Avenue, Memphis, 38152, TN, USA.

出版信息

BMC Syst Biol. 2016 Nov 25;10(1):109. doi: 10.1186/s12918-016-0367-z.

Abstract

BACKGROUND

Despite the increasing availability of high performance computing capabilities, analysis and characterization of stochastic biochemical systems remain a computational challenge. To address this challenge, the Stochastic Parameter Search for Events (SParSE) was developed to automatically identify reaction rates that yield a probabilistic user-specified event. SParSE consists of three main components: the multi-level cross-entropy method, which identifies biasing parameters to push the system toward the event of interest, the related inverse biasing method, and an optional interpolation of identified parameters. While effective for many examples, SParSE depends on the existence of a sufficient amount of intrinsic stochasticity in the system of interest. In the absence of this stochasticity, SParSE can either converge slowly or not at all.

RESULTS

We have developed SParSE++, a substantially improved algorithm for characterizing target events in terms of system parameters. SParSE++ makes use of a series of novel parameter leaping methods that accelerate the convergence rate to the target event, particularly in low stochasticity cases. In addition, the interpolation stage is modified to compute multiple interpolants and to choose the optimal one in a statistically rigorous manner. We demonstrate the performance of SParSE++ on four example systems: a birth-death process, a reversible isomerization model, SIRS disease dynamics, and a yeast polarization model. In all four cases, SParSE++ shows significantly improved computational efficiency over SParSE, with the largest improvements resulting from analyses with the strictest error tolerances.

CONCLUSIONS

As researchers continue to model realistic biochemical systems, the need for efficient methods to characterize target events will grow. The algorithmic advancements provided by SParSE++ fulfill this need, enabling characterization of computationally intensive biochemical events that are currently resistant to analysis.

摘要

背景

尽管高性能计算能力越来越普及,但随机生化系统的分析和表征仍然是一项计算挑战。为应对这一挑战,开发了用于事件的随机参数搜索(SParSE),以自动识别产生概率性用户指定事件的反应速率。SParSE由三个主要部分组成:多级交叉熵方法,用于识别使系统朝着感兴趣事件发展的偏置参数;相关的反向偏置方法;以及对已识别参数的可选插值。虽然SParSE对许多示例有效,但它依赖于感兴趣系统中存在足够数量的内在随机性。在没有这种随机性的情况下,SParSE可能收敛缓慢或根本不收敛。

结果

我们开发了SParSE++,这是一种在系统参数方面表征目标事件的大幅改进算法。SParSE++利用了一系列新颖的参数跳跃方法,这些方法加快了向目标事件的收敛速度,特别是在低随机性情况下。此外,对插值阶段进行了修改,以计算多个插值并以统计上严格的方式选择最优插值。我们在四个示例系统上展示了SParSE++的性能:生死过程、可逆异构化模型、SIRS疾病动力学和酵母极化模型。在所有这四种情况下,SParSE++在计算效率上都比SParSE有显著提高,在最严格误差容限的分析中改进最大。

结论

随着研究人员继续对现实生化系统进行建模,对有效表征目标事件的方法的需求将会增加。SParSE++提供的算法进步满足了这一需求,能够对目前难以分析的计算密集型生化事件进行表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e55/5123426/09763b498348/12918_2016_367_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验