Zhu Guohun, Li Yan, Wen Peng Paul, Wang Shuaifang
Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD, 4350, Australia,
Adv Exp Med Biol. 2015;823:143-57. doi: 10.1007/978-3-319-10984-8_8.
Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.
大多数癫痫脑电分类算法是有监督的,并且需要大量的训练数据集,这阻碍了它们在实时应用中的使用。本章提出了一种无监督的多尺度K均值(MSK-means)算法来区分癫痫脑电信号并识别癫痫区域。K均值算法的随机初始化可能会导致错误的聚类。基于脑电的特征,MSK-means算法用一个合适的比例因子初始化聚类的粗尺度质心。本章从理论上证明了MSK-means算法在效率上优于K均值算法。此外,使用三种分类器:K均值、MSK-means和支持向量机(SVM),利用延迟排列熵特征来识别癫痫发作并定位癫痫源区。实验结果表明,使用MSK-means算法和延迟排列熵识别癫痫发作的准确率比K均值高4.7%,比SVM高0.7%。