Suppr超能文献

基于延迟排列熵和多尺度K均值的癫痫脑电信号分类

Classifying epileptic EEG signals with delay permutation entropy and Multi-Scale K-means.

作者信息

Zhu Guohun, Li Yan, Wen Peng Paul, Wang Shuaifang

机构信息

Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD, 4350, Australia,

出版信息

Adv Exp Med Biol. 2015;823:143-57. doi: 10.1007/978-3-319-10984-8_8.

Abstract

Most epileptic EEG classification algorithms are supervised and require large training datasets, that hinder their use in real time applications. This chapter proposes an unsupervised Multi-Scale K-means (MSK-means) MSK-means algorithm to distinguish epileptic EEG signals and identify epileptic zones. The random initialization of the K-means algorithm can lead to wrong clusters. Based on the characteristics of EEGs, the MSK-means MSK-means algorithm initializes the coarse-scale centroid of a cluster with a suitable scale factor. In this chapter, the MSK-means algorithm is proved theoretically superior to the K-means algorithm on efficiency. In addition, three classifiers: the K-means, MSK-means MSK-means and support vector machine (SVM), are used to identify seizure and localize epileptogenic zone using delay permutation entropy features. The experimental results demonstrate that identifying seizure with the MSK-means algorithm and delay permutation entropy achieves 4. 7 % higher accuracy than that of K-means, and 0. 7 % higher accuracy than that of the SVM.

摘要

大多数癫痫脑电分类算法是有监督的,并且需要大量的训练数据集,这阻碍了它们在实时应用中的使用。本章提出了一种无监督的多尺度K均值(MSK-means)算法来区分癫痫脑电信号并识别癫痫区域。K均值算法的随机初始化可能会导致错误的聚类。基于脑电的特征,MSK-means算法用一个合适的比例因子初始化聚类的粗尺度质心。本章从理论上证明了MSK-means算法在效率上优于K均值算法。此外,使用三种分类器:K均值、MSK-means和支持向量机(SVM),利用延迟排列熵特征来识别癫痫发作并定位癫痫源区。实验结果表明,使用MSK-means算法和延迟排列熵识别癫痫发作的准确率比K均值高4.7%,比SVM高0.7%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验