Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 47146, Iraq.
Department of Computer Science and Engineering, Jawaharlal Nehru Technological University Hyderabad, University College of Engineering, Science and Technology Hyderabad, Telangana, India.
Med Eng Phys. 2024 Aug;130:104206. doi: 10.1016/j.medengphy.2024.104206. Epub 2024 Jul 5.
Epilepsy is one of the most common brain diseases, characterised by repeated seizures that occur on a regular basis. During a seizure, a patient's muscles flex uncontrollably, causing a loss of mobility and balance, which can be harmful or even fatal. Developing an automatic approach for warning patients of oncoming seizures necessitates substantial research. Analyzing the electroencephalogram (EEG) output from the human brain's scalp region can help predict seizures. EEG data were analyzed to extract time domain features such as Hurst exponent (Hur), Tsallis entropy (TsEn), enhanced permutation entropy (impe), and amplitude-aware permutation entropy (AAPE). In order to automatically diagnose epileptic seizure in children from normal children, this study conducted two sessions. In the first session, the extracted features from the EEG dataset were classified using three machine learning (ML)-based models, including support vector machine (SVM), K nearest neighbor (KNN), or decision tree (DT), and in the second session, the dataset was classified using three deep learning (DL)-based recurrent neural network (RNN) classifiers in The EEG dataset was obtained from the Neurology Clinic of the Ibn Rushd Training Hospital. In this regard, extensive explanations and research from the time domain and entropy characteristics demonstrate that employing GRU, LSTM, and BiLSTM RNN deep learning classifiers on the All-time-entropy fusion feature improves the final classification results.
癫痫是最常见的脑部疾病之一,其特征是反复发作,且具有一定的规律性。在癫痫发作期间,患者的肌肉会不由自主地收缩,导致行动和平衡能力丧失,这可能是有害的,甚至是致命的。因此,开发一种自动预警癫痫发作的方法需要进行大量的研究。分析来自人脑头皮区域的脑电图(EEG)输出可以帮助预测癫痫发作。对 EEG 数据进行了分析,以提取时域特征,如赫斯特指数(Hurst)、塔利斯熵(Tsallis entropy)、增强排列熵(improved permutation entropy)和幅度感知排列熵(amplitude-aware permutation entropy)。为了能够自动诊断儿童癫痫发作与正常儿童之间的差异,本研究进行了两个阶段。在第一阶段,使用三种基于机器学习(ML)的模型(包括支持向量机(SVM)、K 最近邻(KNN)或决策树(DT))对 EEG 数据集的提取特征进行分类,在第二阶段,使用三种基于深度学习(DL)的递归神经网络(RNN)分类器对数据集进行分类。EEG 数据集是从 Ibn Rushd 培训医院的神经科诊所获得的。在这方面,广泛的时域和熵特征解释和研究表明,在 All-time-entropy 融合特征上使用 GRU、LSTM 和 BiLSTM RNN 深度学习分类器可以提高最终的分类结果。