Suppr超能文献

基于极限学习机和非线性特征的癫痫脑电图分类。

Epileptic EEG classification based on extreme learning machine and nonlinear features.

机构信息

School of Information Science and Engineering, Shandong University, Jinan 250100, China.

出版信息

Epilepsy Res. 2011 Sep;96(1-2):29-38. doi: 10.1016/j.eplepsyres.2011.04.013. Epub 2011 May 25.

Abstract

The automatic detection and classification of epileptic EEG are significant in the evaluation of patients with epilepsy. This paper presents a new EEG classification approach based on the extreme learning machine (ELM) and nonlinear dynamical features. The theory of nonlinear dynamics has been a powerful tool for understanding brain electrical activities. Nonlinear features extracted from EEG signals such as approximate entropy (ApEn), Hurst exponent and scaling exponent obtained with detrended fluctuation analysis (DFA) are employed to characterize interictal and ictal EEGs. The statistics indicate that the differences of those nonlinear features between interictal and ictal EEGs are statistically significant. The ELM algorithm is employed to train a single hidden layer feedforward neural network (SLFN) with EEG nonlinear features. The experiments demonstrate that compared with the backpropagation (BP) algorithm and support vector machine (SVM), the performance of the ELM is better in terms of training time and classification accuracy which achieves a satisfying recognition accuracy of 96.5% for interictal and ictal EEG signals.

摘要

癫痫脑电的自动检测和分类在癫痫患者的评估中具有重要意义。本文提出了一种新的基于极限学习机(ELM)和非线性动力学特征的脑电分类方法。非线性动力学理论一直是理解脑电活动的有力工具。从脑电信号中提取的非线性特征,如近似熵(ApEn)、Hurst 指数和去趋势波动分析(DFA)得到的标度指数,用于描述癫痫发作间期和发作期的脑电。统计分析表明,癫痫发作间期和发作期脑电之间的这些非线性特征的差异具有统计学意义。采用极限学习机算法训练具有脑电非线性特征的单个隐含层前馈神经网络(SLFN)。实验表明,与反向传播(BP)算法和支持向量机(SVM)相比,ELM 在训练时间和分类准确性方面的性能更好,对癫痫发作间期和发作期脑电信号的识别准确率达到了 96.5%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验